Contributions to Mineralogy and Petrology

, Volume 99, Issue 2, pp 226–237 | Cite as

Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis

  • Nicole Le Breton
  • Alan Bruce Thompson


Dehydration Mineral Resource Crustal Anatexis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott RN, Jr, Clarke DB (1979) Hypothetical liquidus relationships in the subsystem Al2O3-FeO-MgO projected from quartz, alkali-feldspar and plagioclase for a(H2O)<1. Can Mineral 17:549–560Google Scholar
  2. Arzi AA (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44:173–184Google Scholar
  3. Ashworth JR (ed) (1985) Migmatites, Blackie, GlasgowGoogle Scholar
  4. Bohlen SR, Boettcher AL, Wall VJ, Clemens JD (1983) Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. Contrib Mineral Petrol 83:270–277Google Scholar
  5. Brown GC, Fyfe WS (1970) The production of granitic melts during ultrametamorphism. Contrib Mineral Petrol 28:310–318Google Scholar
  6. Burnham CW (1967) Hydrothermal fluids at the magmatic stage. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Reinhart and Winston, New York, pp 38–76Google Scholar
  7. Burnham CW (1979a) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. 2nd ed Wiley Interscience, New York, pp 71–136Google Scholar
  8. Burnham CW (1979b) The importance of volatile constituents. In: Yoder HS (ed) The evolution of the igneous rocks. Fiftieth Anniversary Perspectives. Princeton University Press, Princeton, pp 439–482Google Scholar
  9. Burnham CW (1982) The nature of multicomponent aluminosilicate melts. In: Rickard D, Wickman FE (eds), Chemistry and geochemistry of solutions at high temperatures and pressures. Pergamon Press, Oxford, pp 197–229Google Scholar
  10. Clemens JD (1984) Water contents of silicic to intermediate magmas. Lithos 17:273–287Google Scholar
  11. Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Letts 86:287–306Google Scholar
  12. Clemens JD, Wall VJ (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Can Mineral 19:111–131Google Scholar
  13. Cygan RT, Lasaga AC (1985) Self diffusion of magnesium in garnet at 750° to 900° C. Am J Sci 285:328–350Google Scholar
  14. Dymek RF (1983) Titanium, aluminium and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. Am Miner 68:880–899Google Scholar
  15. Ellis DJ (1986) Garnet-liquid Fe2+ -Mg equilibria and implications for the beginning of melting in the crust and subduction zones. Am J Sci 286:765–791Google Scholar
  16. Ferry JM, Spear FS (1978) experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117Google Scholar
  17. Forbes WC, Flower MFJ (1974) Phase relations of titan-phlogopite, K2Mg4TiAl2Si6O20(OH)4: a refractory phase in the upper mantle? Earth Planet Sci Letts 22:60–66Google Scholar
  18. Freer R (1979) An experimental measurement of cation diffusion in almandine garnet. Nature 280:220–222Google Scholar
  19. Ganguly J, Saxena SK (1984) Mixing properties of alumino-silicate garnets: constraints from natural and experimental data, and applications to geothermo-barometry. Am Mineral 69:88–97Google Scholar
  20. Goldman DS, Albee AL (1977) Correlation of Mg/Fe partitioning between garnet and biotite with 18O/16O partitioning between quartz and magnetite. Am J Sci 227:750–767Google Scholar
  21. Grant JA (1985a) Phase equilibria in low-pressure partial melting of pelitic rocks. Amer J Sci 285:409–435Google Scholar
  22. Grant JA (1985b) Phase equilibria in partial melting of pelitic rocks. In: Ashworth JR (ed) Migmatites. Glasgow, Blackie and Son, Glasgow, pp 86–144Google Scholar
  23. Green TH (1976) Experimental generation of cordieriteor garnetbearing granitic liquids from a pelitic composition. Geology 4:85–88Google Scholar
  24. Green TH (1977) Garnet in silicic liquids and its possible use as a P-T indicator. Contrib Mineral Petrol 65:59–67Google Scholar
  25. Holdaway MJ, Lee SM (1977) Fe-Mg cordierite stability in highgrade pelitic rocks based on experimental, theoretical, and natural observations. Contrib Mineral Petrol 63:175–198Google Scholar
  26. Huang WL, Wyllie PJ (1973) Melting relations of muscovite-granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contrib Mineral Petrol 42:1–14Google Scholar
  27. Huang WL, Wyllie PJ (1975) Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2 to 35 kbars, dry and with excess water. J Geol 83:737–748Google Scholar
  28. Huang WL, Wyllie PJ (1981) Phase relationship of S-type granite with H2O to 35 kbar: Muscovite granite from Harney Peak, South Dakota. J Geophys Res 86:1015–1029Google Scholar
  29. Indares A, Martignole J (1985) Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite. Am Miner 70:272–278Google Scholar
  30. Johannes W (1973) Eine vereinfachte Piston-Zylinder-Apparatur hoher Genauigkeit. Neues Jahrb Mineral Monatsh, pp 337–351Google Scholar
  31. Johannes W (1985) The significance of experimental studies for the formation of migmatites. In: Ashworth JR (ed) Migmatites. Blackie, Glasgow, pp 36–85Google Scholar
  32. Jurewicz SR, Watson EB (1985) The distribution of partial melt in a granitic system: the application of liquid phase sintering theory. Geochimica Cosmochimica Acta 49:1109–1121Google Scholar
  33. Kerrick DM (1972) Experimental determination of muscovite+ quartz stability with PH2O<Ptotal. Am J Sci 272:946–958Google Scholar
  34. Lambert IB, Robertson JK, Wyllie PJ (1969) Melting reactions in the system KAlSi3O8-SiO2-H2O to 18.5 kilobars. Am J Sci 267:609–626Google Scholar
  35. Le Breton N (1986) Anatéxie de roches pélitiques en l'absence d'une phase fluide libre, 11ème R.S.T., Clermont-Ferrand, RésuméGoogle Scholar
  36. Lundgren LW (1966) Muscovite reactions and partial melting in southeastern Connecticut. J Petrology 7:421–453Google Scholar
  37. Luth WC (1976) Granitic rocks. In: D.K. Bailey & R. MacDonald (eds) The evolution of the crystalline rocks. Academic Press, LondonGoogle Scholar
  38. Luth RW, Boettcher AL (1986) Hydrogen and the melting of silicates. Am Miner 71:264–276Google Scholar
  39. Manning DAC, Pichavant M (1983) The role of fluorine and boron in the generation of granitic melts. In: Atherton MP, Gribble CD (eds) Migmatites, melting and metamorphism. Shiva (Nantwich, UK), pp 94–109Google Scholar
  40. Newton RC, Haselton HT (1981) Thermodynamics of the garnetplagioclase-Al2SiO5-quartz geobarometer. In: Newton RC, Navrotsky A, Wood BJ (eds) Thermodynamics of minerals and melts. Springer Berlin Heidelberg New York, pp 129–145Google Scholar
  41. Petö P (1976) An experimental investigation of melting relations involving muscovite and paragonite in the silica-saturated portion of the system K2O-Na2O-Al2O3-SiO2-H2O to 15 kbar total pressure. Prog in Exper Petrol NERC London, 3rd Report, pp 41–45Google Scholar
  42. Petö P, Thompson AB (1974) Wet and dry melting of white micaalkali feldspar assemblages (Abstract). Trans Am Geophys Union 55:479Google Scholar
  43. Richardson SW (1968) Staurolite stability in a part of the system Fe-Al-Si-O-H. J Petrology 467:488Google Scholar
  44. Richardson SW, Gilbert MC, Bell PM (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminum silicate triple point. Am J Sci 267:259–272Google Scholar
  45. Schmid R (1971) Substitution von Biotit durch Granat and “Regranitisation” in granulitischen Paragneissen der Ivreazone (NItalien). Habilitationsschrift ETH ZürichGoogle Scholar
  46. Schmid R, Wood BJ (1976) Phase relationships in granulitic metapelites from the Ivrea-Verbano zone (Northern Italy). Contrib Mineral Petrol 54:255–279Google Scholar
  47. Sparks RSJ, Meyer P, Sigurdsson H (1980) Density variation amongst mid-ocean ridge basalts. Implications for magma mixing and the scarcity of primitive lavas. Earth Planet Sci Letts 46:419–430Google Scholar
  48. Stolper E, Walker D (1980) Melt density and the average composition of basalt. Contr Mineral Petrol 74:7–12Google Scholar
  49. Thompson AB (1976a) Mineral reactions in pelitic rocks: I. Prediction of P-T-X (Fe-Mg) phase relations. Am J Sci 276:401–424Google Scholar
  50. Thompson AB (1976b) Mineral reactions in pelitic rocks: II. Calculation of some P-T-X (Fe-Mg) phase relations. Am J Sci 276:425–454Google Scholar
  51. Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am J Sci 282:1567–1595Google Scholar
  52. Thompson AB (1984) Mineral reactions and mineral equilibria and their use in geothermometry, geobarometry and geohygrometry. In: Thermometrie et barometrie geologiques, Lagache M (ed) Soc Franc Mineral Cristall 1:179–199Google Scholar
  53. Thompson AB (1987) Dehydration melting of crustal rocks. Rendiconti Soc Min Pet Italia (in press)Google Scholar
  54. Thompson AB, Algor JR (1977) Model systems for anatexis of pelitic rocks. I. Theory of melting reactions in the system KAlO2-NaAlO2-Al2O3-SiO2-H2O. Contrib Mineral Petrol 63:247–269Google Scholar
  55. Thompson AB, Tracy RJ (1979) Model systems for anatexis of pelitic rocks. II Facies series melting and reactions in the system CaO-KAlO2-NaAlO2-Al2O3-SiO2-H2O. Contrib Mineral Petrol 70:429–438Google Scholar
  56. Tracy RJ (1978) High grade metamorphic reactions and partial melting in pelitic schist, West-Central Massachusetts. Am J Sci 278:150–178Google Scholar
  57. Tracy RJ (1985) Migmatite occurences in New England. In: Ashworth JR (ed) Migmatites, Blackie, Glasgow, pp 204–224Google Scholar
  58. Tracy RJ, Robinson PR (1983) Acadian migmatite types in Central Massachusetts. In: Migmatites, melting and metamorphism, Atherton MP, Gribble CD (eds) Shiva, Nantwich, UK, pp 163–17Google Scholar
  59. Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8 SiO2-H2O. Geol Soc Am Mem 74, pp 153Google Scholar
  60. Van der Molen I, Paterson MS (1979) Experimental deformation of partially melted granite. Contrib Mineral Petrol 70:218–229Google Scholar
  61. Vielzeuf D, Boivin P (1984) An algorithm for the construction of petrogenetic grids: application to some equilibria in granulitic paragneisses. Am J Sci 284:760–791Google Scholar
  62. Vielzeuf D, Holloway JR (1986) Experimental determination of the fluid-absent melting relations of pelitic rocks at 10 kbar. Sympos Expt Min Geochem, Nancy (abstract)Google Scholar
  63. Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. Contrib Mineral Petrol 98:257–276Google Scholar
  64. Weisbrod A (1973) Refinements of the equilibrium conditions of the reaction Fe cordierite=almandine+quartz+sillimanite (+H2O). Carnegie Inst Washington, Yearb 72:518–521Google Scholar
  65. Wickham SM (1987) The segregation and emplacement of granitic magmas. J Geol Soc London 144:281–297Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Nicole Le Breton
    • 1
  • Alan Bruce Thompson
    • 1
  1. 1.Departement für ErdwissenschaftenETH-ZentrumZürichSwitzerland

Personalised recommendations