Contributions to Mineralogy and Petrology

, Volume 59, Issue 2, pp 111–130 | Cite as

Three-stage metamorphic history of a whiteschist from Sar e Sang, Afghanistan, as part of a former evaporite deposit

  • W. Schreyer
  • K. Abraham


Small volumes (in the cm3 range) of a talc-kyanite schist exhibit mosaic equilibria characterized by mineral assemblages conventionally attributed to vastly different pressure temperature conditions of metamorphism. On the basis of petrographic and microprobe studies these assemblages are attributed to three consecutive stages of metamorphism of a chemically exceptional rock composition falling largely into the model system MgO-Al2O3-SiO2-H2O. Stage 1 typified by Mg chlorite-quartz-talc and some paragonite was followed during stage 2 by talc-kyanite, Mg gedrite-quartz, and the growth of large dravites. In stage 3 pure Mg cordierite formed with or without corundum and/or talc, and kyanite was partly converted into sillimanite. Pressures and temperature during this final stage of metamorphism were probably near 5–6 kb, 640 ° C.

The preservation of this succession of mineral assemblages related to each other through isochemical reactions suggests that the main factors governing the metamorphic history of this whitheschist were compositional changes of the coexisting fluids with time, whereas pressure temperature variations may be subordinate. In the Sar e Sang area such chemical variations of the metamorphic fluids are probably caused by progressive metamorphism and mobilization of a former evaporite deposit.

Microprobe analyses of the phases gedrite and talc indicate variable degrees of sodium incorporation into these phases according to the substitution NaAl→Si.


Talc Corundum Evaporite Mineral Assemblage Cordierite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becke, F.: Über Myrmekit. Tschermaks Mineral. Petrog. Mitt. 27, 377–390 (1908)Google Scholar
  2. Carman, J.H.: Synthetic sodium phlogopite and its two hydrates: stabilities, properties, and mineralogic implications. Am. Mineralogist 59, 261–273 (1974)Google Scholar
  3. Chatterjee, N.D.: Synthesis and upper stability of paragonite. Contrib. Mineral. Petrol. 27, 244–257 (1970)CrossRefGoogle Scholar
  4. Chatterjee, N.D.: The upper stability limit of the assemblage paragonite+quartz and its natural occurrences. Contrib. Mineral. Petrol. 34, 288–303 (1972)CrossRefGoogle Scholar
  5. Chatterjee, N.D.: Crystal-liquid-vapour equilibria involving paragonite in the system NaAlSi3O8-Al2O3-SiO2-H2O. Ing. J. Earth Sci. 1, 3–11 (1974)Google Scholar
  6. Chatterjee, N.D., Froese, E.: A thermodynamic study of the pseudobinary join muscovite-paragonite in the system KAlSi3O8-NaAlSi3O8-Al2O3-SiO2-H2O. Am. Mineralogist 60, 985–993 (1975)Google Scholar
  7. Chinner, G.A., Sweatman, T.R.: A former association of enstatite and kyanite. Mineral. Mag. 36, 1052–1060 (1968)Google Scholar
  8. Deer, W.A., Howie, R.A., Zussman, J.: Rock-forming minerals, Vol. 3. London: Longmans 1962Google Scholar
  9. Deer, W.A., Howie, R.A., Zussman, J.: Rock-forming minerals, Vol. 2. London: Longmans 1963Google Scholar
  10. Evans, H.T., Appleman, D.E., Handwerker, D.S.: The least squares refinement of crystal unic cells with powder diffraction data by an automatic computer method (abstract). Am. Crystallogr. Assoc. Cambridge, Mass., Anuual Meeting Program, 42–43 (1963)Google Scholar
  11. Fawcett, J.J., Yoder, H.S., Jr.: Phase relationship of chlorites in the system MgO-Al2O3-SiO2-H2O. Am. Mineralogist 51, 353–380 (1966)Google Scholar
  12. Fornefeld, C.: Ein Beitrag zu den Phasenbeziehungen des Talk im System MgO-SiO2-H2O und die Gibbs'sche Bildungsenergie des Talk bei 298,15 ° K und 1 Bar. Dipl. Thesis, Ruhr-University Bochum 1975Google Scholar
  13. Kleppa, O.J., Newton, R.C.: The role of solution calorimetry in the study of mineral equilibria. Fortschr. Mineral. 52, 3–20 (1975)Google Scholar
  14. Kulke, H.G.: Metamorphism of evaporitic carbonate rocks (NW Africa and Afghanistan) and the formation of lapis lazuli. Abstr. 25. Intern. Geol. Congr. Sydney, Sect. 3B (1976)Google Scholar
  15. Kulke, H.G., Schreyer, W.: Kyanite-talc schist from Sar e Sang, Afghanistan. Earth Planet. Sci. Lett. 18, 324–328 (1973)CrossRefGoogle Scholar
  16. McKie, D.: Yoderite, a new hydrous magnesium iron aluminosilicate from Mautia Hill, Tanganyika. Mineral. Mag. 32, 282–307 (1959)Google Scholar
  17. Newton, R.C.: An experimental determination of the high-pressure stability limits of magnesian cordierite under wet and dry conditions. J. Geol. 80, 398–420 (1972)Google Scholar
  18. Richardson, S.W., Gilbert, M.C., Bell, P.M.: Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria: the aluminium silicate triple point. Am. J. Sci. 267, 259–272 (1969)Google Scholar
  19. Robinson, P., Ross, M., Jaffe, H.W.: Composition of the anthophyllite-gedrite series, comparisons of gedrite and hornblende, and the anthophyllite-gedrite solvus. Am. Mineralogist 56, 1005–1041 (1971)Google Scholar
  20. Rosenberg, P.E., Foit, F.F., Jr.: Alkali-free tourmalines in the system MgO-Al2O3-SiO2-H2O-B2O3. GSA Annual Meetings Papers, Salt Lake City, 1250–1251 (1975)Google Scholar
  21. Rossovskij, L.N.: Pegmatites in magnesite marbles near the precious spinel locality Kuli-Lal, South-west Pamirs (Russian). Mineraly SSSR 14, 166–181 (1963)Google Scholar
  22. Schreyer, W.: Synthetische und natürliche Cordierite I. Mischkristallbildung synthetischer Cordierite und ihre Gleichgewichtsbeziehungen. Neues Jahrb. Mineral. Abhandl. 102, 39–67 (1964)Google Scholar
  23. Schreyer, W.: Synthetische und natürliche Cordierite II. Die chemischen Zusammensetzungen natürlicher Cordierite und ihre Abhängigkeit von den PTX-Bedingungen bei der Gesteinsbildung. Neues Jahrb. Mineral. Abhandl. 103, 35–79 (1965)Google Scholar
  24. Schreyer, W.: A reconnaissance study of the system MgO-Al2O3-SiO2-H2O at pressures between 10 and 25 kb. Carnegie Inst. Wash. Yearbook 66, 380–392 (1968)Google Scholar
  25. Schreyer, W.: Whiteschist: a high-pressure rock and its geologic significance. J. Geol. 81, 735–739 (1973)Google Scholar
  26. Schreyer, W.: Whiteschist, a new type of metamorphic rock formed at high pressures. Geol. Rundschau 63, 597–609 (1974)CrossRefGoogle Scholar
  27. Schreyer, W.: Whiteschists: Their compositions and pressure temperature regimes based on experimental, field, and petrographic evidence. Tectonophysics, in press (1977)Google Scholar
  28. Schreyer, W., Abraham, K.: Peraluminous sapphirine as a metastable reaction product in kyanite-gedrite-talc schist from Sar e Sang, Afghanistan. Mineral. Mag. 40, 171–180 (1975)Google Scholar
  29. Schreyer, W., Schairer, J.F.: Metastable solid solutions with quartz-type structures on the join SiO2-MgAl2O4. Z. Krist. 116, 60–82 (1961)Google Scholar
  30. Schreyer, W., Schairer, J.F.: Metastable osumilite- and petalite-type phases in the system MgO-Al2O3-SiO2. Am. Mineralogist 47, 90–104 (1962)Google Scholar
  31. Schreyer, W., Seifert, F.: Compatibility relations of the aluminium silicates in the systems MgO-Al2O3-SiO2-H2O and K2O-MgO-Al2O3-SiO2-H2O at high pressures. Am. J. Sci. 267, 371–388 (1969)Google Scholar
  32. Schreyer, W., Yoder, H.S.: The system Mg-cordierite-H2O and related rocks. Neues Jahrb. Mineral. Abhandl. 101, 271–342 (1964)Google Scholar
  33. Seifert, F.: Stability of the assemblage cordierite-corundum in the system MgO-Al2O3-SiO2-H2O. Contrib. Mineral. Petrol. 41, 171–178 (1973)Google Scholar
  34. Seifert, F.: Boron-free kornerupine: a high-pressure phase. Am. J. Sci. 275, 57–87 (1975)Google Scholar
  35. Seifert, F., Schreyer, W.: Lower temperature stability limit of Mg cordierite in the range 1–7 kb water pressure: a redetermination. Contrib. Mineral. Petrol. 27, 225–238 (1970)CrossRefGoogle Scholar
  36. Smith, J.V.: Critical review of synthesis and occurrence of plagioclase feldspars and a possible phase diagram. J. Geol. 80, 505–525 (1972)Google Scholar
  37. Tröger, W.E.: Optische Bestimmung der gesteinsbildenden Minerale. Teil 2, 2. Aufl. 822 p. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung 1969Google Scholar
  38. Velde, B.: Phengite micas: Synthesis, stabilita and natural occurrence. Am. J. Sci. 236, 886–913 (1965)Google Scholar
  39. Vrána, S., Barr, M.W.C.: Talc-kyanite-quartz schists and other high-pressure assemblages from Zambia. Mineral. Mag. 38, 837 (1972)Google Scholar
  40. Yoder, H.S., Jr.: Aluminous anthophyllite: The MgO-Al2O3-SiO2-H2O system at 850 ° C and 10 kb. Carnegie Inst. Wash. Yearbook 70, 142–145 (1971)Google Scholar
  41. Zotov, I.A., Sidorenko, G.A.: Magnesian gedrite from the southwestern Pamirs. Dokl. Akad. Nauk SSSR 180, 700–703 (1968)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • W. Schreyer
    • 1
  • K. Abraham
    • 1
  1. 1.Institut für MineralogieRuhr-Universität BochumBochum-QuerenburgW-Germany

Personalised recommendations