Contributions to Mineralogy and Petrology

, Volume 50, Issue 3, pp 173–195 | Cite as

Contributions to the mineral chemistry of Hawaiian rocks

IV. Pyroxenes in rocks from Haleakala and West Maui volcanoes, Maui, Hawaii
  • R. V. Fodor
  • Klaus Keil
  • T. E. Bunch


Phenocryst and groundmass pyroxenes in 24 rocks of the tholeiitic, alkalic, and nephelinic suites from Haleakala and West Maui volcanoes, Maui, Hawaii, were analyzed quantitatively by electron microprobe. Results and conclusions: i) Tholeiites contain augite, pigeonite, and bronzite; alkalic rocks contain salite, augite, and ferroaugite; and nephelinic rocks have salite, sometimes of Wo>50 mole %. ii) The three suites can be distinguished by Ca contents of pyroxenes: High-Ca pyroxenes of tholeiitic rocks have Wo30–40; those of alkalic rocks have Wo38–48; and those of the nephelinic rocks have Wo47–51; i.e. Wo in clinopyroxene increases from tholeiitic, to alkalic, to nephelinic suites, iii). In the alkalic suite, rock types can be distinguished on the basis of clinopyroxene composition: Alkalic olivine and alkalic basalts have Wo38–45, hawaiites and mugearites have Wo45–48. Trachytes can be distinguished from both groups by higher Fe (Fs22–30) and Ca contents (Wo43–47). iv) Pyroxenes in tholeiitic rocks show higher intrarock variability (e.g. Fs12Wo40-Fs37Wo30) than those of the alkalic and nephelinic suites, v) Na2O bulk-rock content affects Na2O content of the precipitating high-Ca pyroxene; e.g. Na2O in groundmass pyroxene increases from tholeiitic, to alkalic (mafic members only), to nephelinic suites; a similar relationship is present within the differentiated alkalic suite, vi) In tholeiites, changes in groundmass high-Ca pyroxene compositions are related to changes in bulk rock compositions, e.g. FeO/FeO+MgO+CaO in clinopyroxene increases as this ratio increases in the bulk rock; this is not true for alkalic and nephelinic rocks, vii) In groundmass high-Ca pyroxene, Al2O3, Na20, and TiO2 contents increase and MnO content decreases with increasing Wo content from tholeiitic, to alkalic (mafic members only), to nephelinic suites, viii) Groundmass high-Ca pyroxenes are richer in MnO and Na2O and poorer in Cr2O3 compared to coexisting phenocrysts. High-Ca pyroxene phenocrysts in nephelinic rocks and in one mugearite are depleted in SiO2 and enriched in Al2O3 relative to coexisting groundmass clinopyroxene, indicating increased SiO2 activity during crystallization. Some tholeiites show the reverse; this Si—Al relationship is not clear in other samples.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki, K.: Clinopyroxenes from alkaline rocks of Japan. Am. Mineralogist 49, 1199–1223 (1964)Google Scholar
  2. Atkins, F.B.: Pyroxenes of the Bushveld intrusion. S. Africa J. Petrol. 10, 222–249 (1969)Google Scholar
  3. Brown, F. H., Carmiohael, I. S. E.: Quaternary volcanoes of the Lake Rudolf region: 1. The basanite-tephrite series of the Korath Range. Lithos 2, 239–260 (1969)Google Scholar
  4. Brown, G. M.: Mineralogy of basaltic rocks. In: Basalts, vol. 1, ed. H. H. Hess and A. Poldervaart, p. 103–162. Interscience Publishers 1967Google Scholar
  5. Brown, G. M., Vincent, E. A.: Pyroxenes from the late stages of fractionation of the Skaergaard intrusion, East Greenland. J. Petrol. 4, 175–197 (1963)Google Scholar
  6. Carmichael, I. S. E.: The mineralogy of Thingmuli, a Tertiary volcano in eastern Iceland. Am. Mineralogist 52, 1815–1841 (1967)Google Scholar
  7. Carmichael, I. S. E., Nicholls, J., Smith, A. L.: Silica activity in igneous rocks. Am. Mineralogist 55, 246–263 (1970)Google Scholar
  8. Evans, B. W., Moore, J. G.: Mineralogy as a function of depth in the prehistoric Makaopuhi tholeiitic lava lake, Hawaii. Contrib. Mineral. Petrol. 17, 85–115 (1968)Google Scholar
  9. Gibb, F. G. F.: The zoned clinopyroxenes of the Shiant Isles sill, Scotland. J. Petrol. 14, 203–230 (1973)Google Scholar
  10. Gramse, M.: Quantitative Untersuchungen mit der Elektronen-Mikrosonde an Pyroxenen aus Basalten und Peridotit-Einschlüssen. Contrib. Mineral. Petrol. 29, 43–73 (1970)Google Scholar
  11. Gupta, A. K., Onuma, K., Yagi, K., Lidiak, E. G.: Effect of silica concentration on the diopsidic pyroxenes in the system diopside—CaTiAl2O6-SiO2. Contrib. Mineral. Petrol. 41, 333–344 (1973)Google Scholar
  12. Huckenholz, H. G.: Der petrographische Werdegang der Klinopyroxene in den tertiären Vulkaniten der Hocheifel. I. Die Klinopyroxene der Alkaliolivinbasalt-Trachyt-Assoziation. Beitr. Mineral. Petrog. 11, 138–195 (1965)Google Scholar
  13. Keil, K., Fodor, R. V., Bunch, T. E.: Contributions to the mineral chemistry of Hawaiian rocks. II. Feldspars in rocks from Haleakala and West Maui volcanoes, Maui, Hawaii. Contrib. Mineral. Petrol. 37, 253–276 (1972)Google Scholar
  14. Kushiro, I.: Si-Al relation in clinopyroxenes from igneous rocks. Am. J. Sci. 258, 548–554 (1960)Google Scholar
  15. LeBas, M. J.: The role of aluminum in igenous clinopyroxenes with rehation to their parentage. Am. J. Sci. 260, 267–288 (1962)Google Scholar
  16. Macdonald, G. A., Katsura, T.: Relationship of petrographie suites in Hawaii. Am. Geophys. Union, Monograph 6, 187–195 (1962)Google Scholar
  17. Macdonald, G. A., Katsura, T.: Chemical composition of Hawaiian lavas. J. Petrol. 5, 82–133 (1964)Google Scholar
  18. Macdonald, G. A., Powers, H.A.: A further contribution to the petrology of Haleakala volcano, Hawaii. Geol. Soc. Am. Bull. 79, 877–888 (1968)Google Scholar
  19. McDougall, I.: Optical and chemical studies of pyroxenes in a differentiated Tasmanian dolerite. Am. Mineralogist 46, 661–687 (1961)Google Scholar
  20. McDougall, I.: Differentiation of the Tasmanian dolerites: Red Hill dolerite-granophyre association. Geol. Soc. Am. Bull. 73, 279–316 (1962)Google Scholar
  21. Muir, I. D., Tilley, C. E.: Contributions to the petrology of Hawaiian basalts. 2. Tholeiitic basalts of Mauna Loa and Kilauea. Am. J. Sci. 261, 111–128 (1963)Google Scholar
  22. Muir, I. D., Tilley, C. E.: Iron enrichment and pyroxene fractionation in tholeiites. Geol. J. 4, 143–156 (1964)Google Scholar
  23. Murata, K. J., Richter, D. H.: Chemistry of the lavas of the 1959–60 eruption of Kilauea volcano, Hawaii. U.S. Geol. Surv., Profess. Paper 537-A (1966)Google Scholar
  24. Powers, H. A.: Composition and origin of basaltic magma of the Hawaiian Islands. Geochim. Cosmochim. Acta 7, 77–107 (1955)Google Scholar
  25. Stornier, J. C.: Mineralogy and petrology of the Raton-Clayton volcanic field, northeastern New Mexico. Geol. Soc. Am. Bull. 83, 3299–3322 (1972)Google Scholar
  26. Walker, K. R., Ware, N. G., Lovering, J.F.: Compositional variations in the pyroxenes of the differentiated Palisades sill, New Jersey. Geol. Soc. Am. Bull. 84, 89–110 (1973)Google Scholar
  27. White, R. W.: Ultramafic inclusions in basaltic rocks from Hawaii. Contrib. Mineral. Petrol. 12, 245–314 (1966)Google Scholar
  28. Wilkinson, J. F. G.: Clinopyroxenes of alkali olivine-basalt magma. Am. Mineralogist 41, 724–743 (1956)Google Scholar
  29. Wright, T. L.: Chemistry of Kilauea and Mauna Loa Lava in space and time. U.S. Geol. Surv., Profess. Papers 735 (1971)Google Scholar
  30. Wright, T. L., Fiske, R.S.: Origin of the differentiated and hybrid lavas of Kilauea Volcano, Hawaii. J. Petrol. 12, 1–65 (1971)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • R. V. Fodor
    • 1
  • Klaus Keil
    • 1
  • T. E. Bunch
    • 2
  1. 1.Department of Geology and Institute of MeteoriticsThe University of New MexicoAlbuquerqueUSA
  2. 2.Space Sciences DivisionNASA Ames Research CenterMoffett FieldUSA

Personalised recommendations