# Dynamic algebras: Examples, constructions, applications

- 64 Downloads
- 20 Citations

## Abstract

Dynamic algebras combine the classes of Boolean (*B* ∨ ′ 0) and regular (*R* ∪; *) algebras into a single finitely axiomatized variety (*B R* ◊) resembling an *R*-module with “scalar” multiplication ◊. The basic result is that * is reflexive transitive closure, contrary to the intuition that this concept should require quantifiers for its definition. Using this result we give several examples of dynamic algebras arising naturally in connection with additive functions, binary relations, state trajectories, languages, and flowcharts. The main result is that free dynamic algebras are residually finite (i.e. factor as a subdirect product of finite dynamic algebras), important because finite separable dynamic algebras are isomorphic to Kripke structures. Applications include a new completeness proof for the Segerberg axiomatization of prepositional dynamic logic, and yet another notion of regular algebra.

## Keywords

Mathematical Logic Binary Relation Additive Function Basic Result Computational Linguistic## Preview

Unable to display preview. Download preview PDF.

## References

- [Bir35]G. Birkhoff.
*On the structure of abstract algebras*.**Proc. Cambridge Phil. Soc**, 31, 1935.Google Scholar - [Bir67]G. Birkhoff.
**Lattice Theory.**Volume 25, A.M.S. Colloq. Publications, 1967.Google Scholar - [BL70]G. Birkhoff and J.D. Lipson.
*Heterogeneous algebras*.**J. of Combinatorial Theory**, 8:115–133, 1970.Google Scholar - [Bri81]
- [CCMP89]R.T Casley, R.F. Crew, J. Meseguer, and V.R. Pratt.
*Temporal structures*. In**Proc. Conf. on Category Theory and Computer Science, LNCS**, Springer-Verlag, Manchester, September 1989.Google Scholar - [Coh65]P.M. Cohn.
**Universal Algebra**. Harper and Row, New York, 1965.Google Scholar - [Con71a]J.H. Conway.
**Regular Algebra and Finite Machines**. Chapman and Hall, London, 1971.Google Scholar - [Con71b]J.H. Conway.
**Regular Algebra and Finite Machines**. Chapman and Hall, London, 1971.Google Scholar - [Con77]R.L. Constable.
*On the theory of programming logics*. In**Proc. 9th Annual ACM Symp. on Theory of Computing**, pages 269–285, Boulder, Col., May 1977.Google Scholar - [dBdR72]J.W. de Bakker and W.P. de Roever.
*A calculus for recursive program schemes*. In M. Nivat, editor,**Automata, Languages and Programming**, pages 167–196, North Holland, 1972.Google Scholar - [Dij76]E.W. Dijkstra.
**A Discipline of Programming**. Prentice-Hall, Englewood Cliffs, N.J., 1976.Google Scholar - [FL79]M.J Fischer and R.E. Ladner.
*Propositional dynamic logic of regular programs*.**JCSS**, 18(2), 1979.Google Scholar - [Flo67]R.W. Floyd.
*Assigning meanings to programs*. In J.T Schwartz, editor,**Mathematical Aspects of Computer Science**, pages 19–32, 1967.Google Scholar - [Gra68]G. Graetzer.
**Universal Algebra**. Van Nostrand, Princeton, NJ, 1968.Google Scholar - [Hal62]P.R. Halmos.
**Algebraic Logic**. Chelsea, New York, 1962.Google Scholar - [Har84]D. Harel.
*Dynamic logic*. In**Handbook of Philosophical Logic. II: Extensions of Classical Logic**, pages 497–604, D. Reidel, Boston, 1984.Google Scholar - [Hen77]
- [Hoa69]C.A.R. Hoare.
*An axiomatic basis for computer programming*.**Communications of the ACM**, 12:576–580, 1969.Google Scholar - [Hor51]A. Horn.
*On sentences which are true of direct unions of algebras*.**J. Symbolic Logic**, 16:14–21, 1951.Google Scholar - [Kle56]S.C. Kleene.
*Representation of events in nerve nets and finite automata*. In**Automata Studies**, pages 3–42, Princeton University Press, Princeton, NJ, 1956.Google Scholar - [Koz79a]D. Kozen.
*On the duality of dynamic algebras and Kripke models*. In E. Engeler, editor,**Proc. Workshop on Logic of Programs 1979**,**LNCS 125**, pages 1–11, Springer-Verlag, 1979.Google Scholar - [Koz79b]D. Kozen.
**On the representation of dynamic algebras**. Technical Report RC7898, IBM, October 1979.Google Scholar - [Koz79c]D. Kozen.
*A representation theorem for models of *-free PDL.*May 1979. Manuscript.Google Scholar - [Koz79d]D. Kozen.
**A representation theorem for models of *-free PDL**. Technical Report RC7864, IBM, September 1979.Google Scholar - [Koz80a]D. Kozen.
**On the representation of dynamic algebras II**. Technical Report RC8290, IBM, May 1980.Google Scholar - [Koz80b]D. Kozen.
*A representation theorem for models of *-free PDL*. In**Proc. 7th Colloq. on Automata, Languages, and Programming**, pages 351–362, July 1980.Google Scholar - [Koz81a]D. Kozen.
*Dynamic algebra: Section in: Propositional dynamic logics of programs: a survey, by R. Parikh*. In E. Engeler, editor,**Proc. Workshop on Logic of Programs 1979, LNCS 125**, pages 102–144, Springer, 1981.Google Scholar - [Koz81b]D. Kozen.
*On induction vs. *-continuity.*In D. Kozen, editor,**Proc. Workshop on Logics of Programs 1981, LNCS 131**, pages 167–176, Spring-Verlag, 1981.Google Scholar - [Koz90]D. Kozen.
**A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events.**Technical Report 90–1123, Cornell U., May 1990.Google Scholar - [KP83]D. Kozen and R. Parikh.
*A decision procedure for the propositional μ-calculus.*In E. Clarke and Kozen D., editors,**Proc. Workshop on Logics of Programs 1983**, LNCS 164, pages 313–325, Springer-Verlag, 1983.Google Scholar - [Mil80]R, Milner.
**Calculus of Communicating Behavior, LNCS 92.**Springer-Verlag, 1980.Google Scholar - [Mon64]
- [Nem81]I. Németi.
*Dynamic algebras of programs.*In**Proc. Fundamentals of Computation Theory, LNCS 117**, pages 281–290, Springer-Verlag, 1981.Google Scholar - [Nem82]I. Németi.
*Every free algebra in the variety generated by the representable dynamic algebras is separable and representable*.**Theoretical Computer Science**, 17:343–347, 1982.Google Scholar - [Ng84]K.C. Ng.
**Relation Algebras with Transitive Closure**. PhD thesis, University of California, Berkeley, 1984. 157+iv pp.Google Scholar - [NT77]K.C. Ng and A. Tarski.
*Relation algebras with transitive closure, Abstract 742-02-09*.**Notices Amer. Math. Soc.**, 24:A29-A30, 1977.Google Scholar - [Par78]R. Parikh.
*A completeness result for a prepositional dynamic logic*. In**LNCS 64**, pages 403–415, Springer-Verlag, 1978.Google Scholar - [Pnu77]A. Pnueli.
*The temporal logic of programs*. In**18th IEEE Symposium on Foundations of Computer Science**, pages 46–57, October 1977.Google Scholar - [Pra76]V.R. Pratt.
*Semantical considerations on Floyd-Hoare logic*. In**Proc. 17th Ann. IEEE Symp. on Foundations of Comp. Sci.**, pages 109–121, October 1976.Google Scholar - [Pra79a]V.R. Pratt.
*Models of program logics*. In**20th Symposium on foundations of Computer Science**, San Juan, October 1979.Google Scholar - [Pra79b]V.R. Pratt.
*Process logic*. In**Proc. 6th Ann. ACM Symposium on Principles of Programming Languages**, pages 93–100, San Antonio, January 1979.Google Scholar - [Pra80a]V.R. Pratt.
*Application of modal logic to programming*.**Studia Logica**, 34(2/3):257–274, 1980.Google Scholar - [Pra80b]V.R. Pratt.
*Dynamic algebras and the nature of induction.*In**12th ACM Symposium on Theory of Computation**, Los Angeles, April 1980.Google Scholar - [Pra80c]V.R. Pratt.
*A near optimal method for reasoning about action*.**Journal of Computer and System Sciences**, 2:231–254, April 1980. Also MIT/LCS/TM-113, M.I.T., Sept. 1978.Google Scholar - [Pra81a]V.R. Pratt.
*A decidable mu-calculus.*In**Proc. 22nd IEEE Conference on Foundations of Computer Science**, pages 421–427, October 1981.Google Scholar - [Pra81b]V.R. Pratt.
*Using graphs to understand PDL*. In D. Kozen, editor,**Proc. Workshop on Logics of Programs 1981, LNCS 131**, pages 387–396, Spring-Verlag, 1981.Google Scholar - [Pra90a]V.R. Pratt.
*Action logic and pure induction*. In**Logics in AI, LNCS 478**, pages 97–120, Springer-Verlag, Amsterdam, September 1990.Google Scholar - [Pra90b]V.R. Pratt.
*Dynamic algebras as a well-behaved fragment of relation algebras*. In**Algebraic Logic and Universal Algebra in Computer Science, LNCS 425**, Springer-Verlag, Ames, Iowa, June 1988, 1990.Google Scholar - [Red64]V.N. Redko.
*On defining relations for the algebra of regular events*(*Russian*).**Ukrain. Mat. Z.**, 16:120–126, 1964.Google Scholar - [Sal66]A. Salomaa.
*Two complete axiom systems for the algebra of regular events*.**Journal of the ACM**, 13:158–169, 1966.Google Scholar - [Sal70]A. Salwicki.
*Formalized algorithmic languages.***Bull. Acad. Pol. Sci., Ser. Sci. Math. Astr. Phys.**, 18(5), 1970.Google Scholar - [Seg77]K. Segerberg.
*A completeness theorem in the modal logic of programs*.**Notices of the AMS**, 24(6):A-552, October 1977.Google Scholar - [SS78]A. Salomaa and M. Soittola.
**Automata-Theoretic Aspects of Formal Power Series**. Springer-Verlag, New York, 1978.Google Scholar - [Sto36]M. Stone.
*The theory of representations for Boolean algebras*.**Trans. Amer. Math. Soc.**, 40:37–111, 1936.Google Scholar - [Tar41]
- [TR87]V. Trnkova and J. Reiterman.
*Dynamic algebras with tests*.**Journal of Computer and System Sciences**, 35:229–242, 1987.Google Scholar