Studia Logica

, Volume 47, Issue 3, pp 233–241

A finite model theorem for the propositional μ-calculus

  • Dexter Kozen
Article

Abstract

We prove a finite model theorem and infinitary completeness result for the propositional μ-calculus. The construction establishes a link between finite model theorems for propositional program logics and the theory of well-quasi-orders.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. J. Fischer and R. E. Ladner, Prepositional Dynamic Logic of regular programs, J. Comput. Syst. Sci. 18:2 (1979), pp. 194–211.Google Scholar
  2. [2]
    D. Kozen, Results on the propositional μ-calculus, in: E. Schmidt (ed.), Proc. 9th Int. Colloq. Automata, Languages, and Programming 1982, Lect. Notes in Comput. Sci. 140, Springer, 1982, pp. 348–359.Google Scholar
  3. [3]
    D. Kozen and R. Parikh, A decision procedure for the propositional μ-calculus, in: E. Clarke and D. Kozen (eds.), Proc. Workshop on Logics of Programs 1983, Lect. Notes in Comput. Sci. 164, Springer, 1984, pp. 313–326.Google Scholar
  4. [4]
    R. Laver, Well-quasi-ordering s and sets of finite sequences, Proc. Camb. Phil. Soc. 79 (1976), pp. 1–10.Google Scholar
  5. [5]
    R. Laver, Better-quasi-orderings and a class of trees, in: Studies in Foundations and Combinatorics, Advances in Mathematics Supplementary Studies, v.1 (1978), pp. 31–48.Google Scholar
  6. [6]
    C. St. J. A. Nash-Williams, On well-quasi-ordering infinite trees, Proc. Camb. Phil. Soc. 61 (1965), pp. 697–720.Google Scholar
  7. [7]
    C. St. J. A. Nash-Williams, On better-quasi-ordering transfinite sequences, Proc. Camb. Phil. Soc. 64 (1968), pp. 273–290.Google Scholar
  8. [8]
    V. R. Pratt, A decidable μ-calculus (preliminary report), Proc. 22nd IEEE Symp. Found. Comput. Sci., 1981, pp. 421–427.Google Scholar
  9. [9]
    R. Streett, Propositional Dynamic Logic of looping and converse, Proc. 13th ACM Symp. Theory of Comput., 1981, pp. 375–383.Google Scholar
  10. [10]
    R. Streett and E. A. Emerson, An elementary decision procedure for the μ-calculus, in: J. Paredaens (ed.), Proc. 11th Int. Colloq. Automata, Languages, and Programming 1984, Lect. Notes in Comput. Sci. 172, Springer, 1984, pp. 465–472.Google Scholar
  11. [11]
    D. Scott and J. de Bakker, A theory of programs, unpublished notes, Vienna, 1969.Google Scholar

Copyright information

© Polish Academy of Sciences 1988

Authors and Affiliations

  • Dexter Kozen
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations