Studia Logica

, Volume 46, Issue 2, pp 113–120 | Cite as

Axiomatizable classes with strong homomorphisms

  • S. S. Goncharov


In the paper A. I. Malcev's problem on the characterization of axioms for classes with strong homomorphisms is being solved.


Mathematical Logic Computational Linguistic Axiomatizable Class Strong Homomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Andreka and I. Nemeti, Generalization of the concept of variety and quasi variety to partial algebras through category theory, Dissertationes Mathematicae, CCIV, p. 198.Google Scholar
  2. [2]
    H. Andreka and I. Nemeti, Formulas and ultraproduct in categories, Beiträge zur Algebra and Geometrie (8 (1979), pp. 133–151.Google Scholar
  3. [3]
    Yu. L. Ershov, Solvability problems and constructive models, “Nauka”, Moscow, 1980 (in Russian).Google Scholar
  4. [4]
    H. Keisler and C. C. Chang, Model theory, Moscow, “Mir”, 1977 (in Russian).Google Scholar
  5. [5]
    H. I. Keisler, Reduced products and Horn classes, Transactions of American Mathematical Society 117, pp. 307–328.Google Scholar
  6. [6]
    R. Lyndon, Existential Horn sentences, Proceedings of American Mathematical Society, pp. 994–998,Google Scholar
  7. [7]
    R. Lyndon, Properties preserved under homomorphisms, Pacific Journal of Mathematics 9, No. 1, pp. 143–154.Google Scholar
  8. [8]
    R. Lyndon, Properties preserved in subdirect products, Pacific Journal of Mathematics 9, No. 1, pp. 155–164.Google Scholar
  9. [9]
    J. Łoś and R. Suszko, On the infinite sums of models, Bulletin de l'Académie Polonaise des Sciénces 3, (1955), No. 4, p. 201–202.Google Scholar
  10. [10]
    J. Łoś and R. Suszko, On the extending of models. II, Fundamenta Mathematicae 42, (1955), No. 2, p. 470.Google Scholar
  11. [11]
    J. Łoś, Quelques remarques, theoremes et problemes sur les classes definissables d'algebres, In: Mathematical Interpretations of Formal System, Amsterdam, 1955.Google Scholar
  12. [12]
    J. Łoś, On extending of models. I, Fundamenta Mathematicae 42, (1955), pp. 38–54.Google Scholar
  13. [13]
    A. I. Malcev, Some problems of the theory of classes of models, IV, All-Union Mathematical Congress, Leningrad, 1963, Trudy, t. 1, pp. 169–198 (in Russian).Google Scholar
  14. [14]
    A. I. Malcev, Subdirect products of models, Doklady AN SSSR, 109, (1956), No. 2, pp. 264–266 (in Russian).Google Scholar
  15. [15]
    A. I. Malcev, On classes of models with the generation operation, Doklady AN SSSR 116, (1957), No. 5, p. 738–741 (in Russian).Google Scholar
  16. [16]
    A. Marczewski, Sur les congruences et les proprictes positive d'algebres abstraites, Colloquium Mathematicum, 2, (1951), pp. 220–228.Google Scholar
  17. [17]
    A. Robinson, Obstructions to arithmetical extension and the theorem of Łoś and Suszko, Indagationes Mathematicae, 21, (1939), No. 5, pp. 489–495.Google Scholar
  18. [18]
    A. Tarski, Contributions to the theory of models, III, Proc. Koninkl. nederl. acad. wet. A58, (1955), pp. 58–64.Google Scholar
  19. [19]
    S. Shelah, Uniqueness and characterization of prime models over sets for totally transcendental first-order theories, Journal of Symbolic Logic 37, pp. 107–113.Google Scholar
  20. [20]
    F. Golvin, Horn sentences, Annals of Mathematical Logic (1970), No. 4, pp. 389–422.Google Scholar
  21. [21]
    I. Gain, On classes of algebraic systems closed with respect to quotients, Universal Algebra and Applications, Banach Center Publications, Vol. 9, PWN-Polish Scientific Publishers, Warsaw, 1982, pp. 127–131.Google Scholar

Copyright information

© Polish Academy of Sciences 1987

Authors and Affiliations

  • S. S. Goncharov
    • 1
  1. 1.Institute of Mathematics of the Siberian Division of the Academy of Sciences of the USSRNovosibirskUSSR

Personalised recommendations