Pflügers Archiv

, Volume 416, Issue 1–2, pp 219–221

The effects of 2,3-butanedione monoxime on initial heat, tension, and aequorin light output of ferret papillary muscles

  • E. M. Blanchard
  • G. L. Smith
  • D. G. Allen
  • N. R. Alpert
Short Communication Heart Circulation Respiration and Blood; Environmental and Exercise Physiology

Abstract

At low concentrations (up to 5 mM) the compound 2,3-butanedione monoxime (BDM) was found to reduce twitch tension and initial heat production in isolated papillary muscles without significantly affecting the size of the intracellular Ca transient measured with aequorin luminescence. Higher concentrations of BDM caused further inhibition of twitch tension and heat production with a fall in the size of the Ca+ transient. The size of the aequorin transient was 50% of the control value at 15 mM BDM while twitch tension was negligible. These results suggest that BDM selectively inhibits Ca2+ activated force in cardiac muscle at low concentrations with additional effects on intracellular calcium at concentrations above 5 mM.

Key Words

Cardiac muscle butanedione monoxime heat production aequorin luminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, D.G. & Kurihara, S. (1980) Calcium transients in mammalian ventricular muscle. Eur Heart J IV(Suppl A):5–15.Google Scholar
  2. Blanchard, E.M. & Alpert, N.R. (1987) The effect of isoproterenol, ODCG 115, and caffiene on the heat related to excitation-contraction coupling in heart muscle. Can J Physiol Pharmacol 65, 659–666.Google Scholar
  3. Fryer, M.W., Neering, I.R., Stephenson, D.G. (1988) Effects of 2,3-butanedione monoxime on the contractile activation properties of fast and slow twitch rat muscle fibres. J Physiol 407, 53–75.Google Scholar
  4. Gibbs, C.L. (1982) Modification of the physiological determinants of cardiac energy expenditure by pharmacological agents. Pharmacol Ther 18, 133–157.Google Scholar
  5. Homsher, E., Mommaerts, W. F. H. M., Ricchiuti, N. V., Wallner, A. (1972) Activation heat, activation metabolism and tension-related heat in frog semitendinosus muscles. J Physiol 220, 601–625.Google Scholar
  6. Horiuti, K., Hiuchi, H., Umazume, Y., Konishi, M., Okezeki, O., Kurihara, S. (1988) Mechanism of action of 2,3-butanedione monoxime on contraction of frog skeletal muscle fibres. J Mus Res Cell Motil 9:156–164.Google Scholar
  7. Li, T., Sperelakis, N., Teneick, R.E., Solaro, R.J. (1985) Effects of diacetyl monoxime on cardiac excitation-contraction coupling. J Pharmacol Exp Ther 232, 688–695.Google Scholar
  8. Wiggins, J. R., Reiser, J., Fitzpatrick, P. F., Bergey, J. L. (1980) Inotropic actions of diacetyl monoxime in cat ventricular muscle. J Pharmacol Exp Ther 212, 217–224.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • E. M. Blanchard
    • 1
  • G. L. Smith
    • 2
    • 3
  • D. G. Allen
    • 2
  • N. R. Alpert
    • 1
  1. 1.Department of PhysiologyUniversity of VermontBurlingtonUSA
  2. 2.Department of PhysiologyUniversity College LondonLondonGB
  3. 3.Institute of PhysiologyGlasgow UniversityGlasgowGB

Personalised recommendations