Advertisement

Studia Logica

, Volume 50, Issue 2, pp 189–216 | Cite as

The disjunction property of intermediate propositional logics

  • Alexander Chagrov
  • Michael Zakharyashchev
Article

Abstract

This paper is a survey of results concerning the disjunction property, Halldén-completeness, and other related properties of intermediate prepositional logics and normal modal logics containing S4.

Keywords

Mathematical Logic Modal Logic Related Property Computational Linguistic Propositional Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. G. Anderson [1972], Superconstructive prepositional calculi with extra axiom schemes containing one variable, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 18 (1972), pp. 113–130.Google Scholar
  2. F. Bellissima [1989], Two classes of intermediate propositional logics without disjunction property, Archives of Mathematical Logic 28 (1989), pp. 23–33.Google Scholar
  3. J. F. A. K. van Benthem and I. L. Humberstone [1983], Halldén-completeness by gluing of Kripke frames, Notre Dame Journal of Formal Logic 24 (1983), pp. 426–430.Google Scholar
  4. W. J. Blok [1976], Varieties of interior algebras, Dissertation, University of Amsterdam, 1976.Google Scholar
  5. A. V. Chagrov [1985], On complexity of propositional logics, Complexity Problems in Mathematical Logic, Kalinin State University, 1985, pp. 80–90 (in Russian).Google Scholar
  6. A. V. Chagrov [1990], Undecidable properties of extensions of provability logic, parts I, II, to appear in Algebra and Logic (in Russian).Google Scholar
  7. A. V. Chagrov [1991], The cardinality of the set of maximal intermediate logics with the disjunction property is of continuum, to appear in Mathematical USSR Zametki (in Russian).Google Scholar
  8. A. V. Chagrov and M. V. Zakharyashchev [1989], Undecidability of the disjunction property of intermediate calculi, preprint, Institute of Applied Mathematics, the USSR Academy of Sciences, 1989, no. 57 (in Russian).Google Scholar
  9. A. V. Chagrov and M. V. Zakharyashchev [1990], Undecidability of Halldéncompleteness of modal logics, preprint, Institute of Applied MAthematics, the USSR Academy of Sciences, 1990, no. 82 (in Russian).Google Scholar
  10. A. V. Chagrov and M. V. Zakharyashchev [1990a], Undecidability of the disjunction property of propositional logics and other related problems, manuscript, 1990.Google Scholar
  11. A. V. Chagrov and M. V. Zakharyashchev [1990b], An essay in complexity aspects of intermediate calculi, Proceedings of the Forth Asian Logic Conference, CSK Education Center, Tokyo, Japan, 1990, pp. 26–29.Google Scholar
  12. A. V. Chagrov and M. V. Zakharyashchev [1990c], Complexity problems in intermediate and modal logics, manuscript, 1990.Google Scholar
  13. A. V. Chagrov and M. V. Zakharyashchev [1991], Modal companions of intermediate logics: A survey, to appear in Studia Logica, 1991.Google Scholar
  14. Ja. M. Drugush [1978], A class of logics without the disjunction property, Vestnik of Moscow State University (Mathematics), no. 6 (1978), pp. 9–14 (in Russian).Google Scholar
  15. L. L. Esakia [1979], On varieties of Grzegorczyk's algebras, Studies in Non-Classical Logics and Set Theory, Moscow, Nauka, 1979, pp. 257–287 (in Russian).Google Scholar
  16. K. Fine [1974], Logics containing K4. Part I, The Journal of Symbolic Logic 39 (1974), pp. 31–42.Google Scholar
  17. K. Fine [1985], Logics containing K4 Part II, The Journal of Symbolic Logics, 50 (1985), pp. 619–651.Google Scholar
  18. H. Friedman [1975], The disjunction property implies the numerical existence property, Proceedings of the National Academy of Sciences of the United States of American 72 (1975), pp. 2877–2878.Google Scholar
  19. H. Friedman and M. Sheard [1989], The equivalence of the disjunction and existence properties for modal arithmetic, The Journal of Symbolic Logic 54 (1989), pp. 1456–1459.Google Scholar
  20. D. M. Gabbay [1970], The decidability of the Kreisel-Putnam system., The Journal of Symbolic Logic 35 (1970), pp. 431–437.Google Scholar
  21. D. M. Gabbay and D. H. J. de Jongh [1969], A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property, Technical Report, 1969.Google Scholar
  22. D. M. Gabbay and D. H. J. de Jongh [1974], A sequence of decidability finitely axiomatizable intermediate logics with the disjunction property, The Journal of Symbolic Logic 39 (1974), pp. 67–78.Google Scholar
  23. G. I. Galanter [1988], Halldén-completeness for superintuitionistic logics, Proceedings of IV Soviet-Finland Symposium for Mathematical Logic, Tbilisi, 1988, pp. 81–89 (in Russian).Google Scholar
  24. G. I. Galanter [1990], A continuum of intermediate logics which are maximal among the logics having the intuitionistic disjunctionless fragment, Proceedings of 10th USSR Conference for Mathematical Logic, Alma-Ata, 1990, p. 41 (in Russian).Google Scholar
  25. G. I. Galanter and A. Ju. Muravitski [1988], On Minari's question, Proceedings of 9th USSR Conference for Mathematical Logics, Leningrad, 1988, p. 34 (in Russian).Google Scholar
  26. G. Gentzen [1934–5], Untersuchungen uber das logische Schliessen, Mathematische Zeitschrift, Heft 38 (1934–5), pp. 405–431.Google Scholar
  27. K. Gödel [1933], Interpretation des intuitionistischen Aussagenkalkulus, Ergebnisse eines mathematischen Kolloquiums, Heft 4 (1933), pp. 39–40.Google Scholar
  28. V. L. Gudovshchikov and V. V. Rybakov [1982], The disjunction property in modal logics, Proceedings of 8th USSR Conference “Logic and Methodology of Science”, Vilnius, 1982, pp. 35–36.Google Scholar
  29. S. Halldén [1951], On the semantic non-completeness of certain Lewis calculi, The Journal of Symbolic Logic 16 (1951), pp. 127–129.Google Scholar
  30. R. Harrop [1956], On disjunctions and existential statements in intuitionistic systems of logic, Math. Annalen 5 (1956), pp. 347–361.Google Scholar
  31. T. Hosoi [1967], On intermediate logics, I, The Journal of the Faculty of Science, University of Tokio, Section I 14 (1967), pp. 293–312.Google Scholar
  32. T. Hosoi and H. Ono [1973], Intermediate propositional logics (A survey), The Journal of Tsuda College, 5 (1973), pp. 67–82.Google Scholar
  33. V. A. Jankov [1963], Relationship between deducibility in the intuitionistic propositional calculus and finite implicational structures, Soviet Mathematical Doklady 8 (1963), pp. 1203–1204.Google Scholar
  34. D. H. J. de Jongh [1968], Investigations on the intuitionistic propositional calculus, Dissertation, University of Wisconsin, 1968.Google Scholar
  35. D. H. J. de Jongh [1970], A characterization of the intuitionistic propositional calculus, Intuitionistic and Proof Theory, A. Kino, J. Myhill, R. E. Vesley (eds.), Amsterdam, 1970, pp. 211–217.Google Scholar
  36. R. E. Kirk [1979], Some classes of Kripke frames characteristic for the intuitionistic logic, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 25 (1979), pp. 409–410.Google Scholar
  37. R. E. Kirk [1982], A result on propositional logics having the disjunction property, Notre Dame Journal of Formal Logic 23 (1982), pp. 71–74.Google Scholar
  38. S. C. Kleene [1945], On the interpretation of intuitionistic number theory, The Journal of Symbolic Logic 10 (1945), pp. 109–124.Google Scholar
  39. S. C. Kleene [1962], Disjunction and existence under implication in elementary intuitionistic formalisms, The Journal of Symbolic Logic 27 (1962), pp. 11–18.Google Scholar
  40. Y. Komori [1978], Logics without Craig's interpolation property, Proceedings of the Japan Academy 54 (1978), pp. 46–48.Google Scholar
  41. G. Kreisel and H. Putnam [1967], Eine unableitbarkeitsbeweismethode für den intuitionistischen Aussgenkalkul, Archiv für mathematische Logik und Grundlagenforschung 3 (1957), pp. 74–78.Google Scholar
  42. A. V. Kuznetsov [1974], On some questions of classification of superintuitonistic logics, Proceedings of 3rd USSR Conference for Mathematical Logic, Novosibirsk, 1974, pp. 119–122 (in Russian).Google Scholar
  43. E. J. Lemmon [1966], A note on Halldén-incompleteness, Notre Dame Journal of Formal Logic, 7 (1966), pp. 296–300.Google Scholar
  44. L. A. Levin [1969], Some syntactic theorems on the calculus of finite problems of Ju. T. Medvedev, Soviet Mathematical Doklady 10 (1969), pp. 288–290.Google Scholar
  45. Logic Notebook [1986], Novosibirsk (in Russian).Google Scholar
  46. J. Łukasiewicz [1952], On the intuitionistic theory of deduction, Indagationes Mathematicae 14 (1952), pp. 202–212.Google Scholar
  47. L. L. Maksimova [1976], Principle of variable separation in propositional logics, Algebra and Logic 15 (1976), pp. 168–184 (in Russian).Google Scholar
  48. L. L. Maksimova [1977], The Craig theorem in superintuitionistic logics and amalgamated varieties of pseudo-Boolean algebras, Algebra and Logic 16 (1977), pp. 643–681 (in Russian).Google Scholar
  49. L. L. Maksimova [1979], Interpolation properties of superintuitionistic logics, Studia Logica 38 (1979), pp. 419–128.Google Scholar
  50. L. L. Maksimova [1984], On the number of maximal intermediate logics having the disjunction property, Proceedings of 7th USSR Conference for Mathematical Logic, Novosibirsk, 1984, pp. 95 (in Russian).Google Scholar
  51. L. L. Maksimova [1986], On maximal intermediate logics with the disjunction property, Studia Logica 45 (1986), pp. 69–75.Google Scholar
  52. L. L. Maksimova and V. V. Rybakov [1974], On lattice of normal modal logics, Algebra and Logic 13 (1974), pp. 188–216 (in Russian).Google Scholar
  53. J. C. C. McKinsey [1953], Systems of modal logic which are not unreasonable in the sense of Halldén, The Journal of Symbolic Logic 18 (1953), pp. 109–113.Google Scholar
  54. J. C. C. McKinsey and A. Tarski [1948], Some theorems about the sentential calculi of Lewis and Heyting, The Journal of Symbolic Logic, 13 (1948), pp. 1–5.Google Scholar
  55. Ju. T. Medvbdev [1963], Interpretation of logical formulas by finite problems and its connection with the theory of realizability, Soviet Mathematical Doklady 148 (1963), pp. 771–774 (in Russian).Google Scholar
  56. P. Miglioli, U. Moscato, M. Ornaghi, S. Quazza and G. Usberti [1989], Some results on intermediate constructive logics, Notre Dame Journal of Formal Logic, 30 (1989), pp. 543–562.Google Scholar
  57. P. Minari [1986], Intermediate logics with the same disjunctionless fragment as intuitionistic logic, Studia Logica 45 (1986), pp. 207–222.Google Scholar
  58. P. Minari and A. Wroński [1988], The property (HD) in intermediate logics: a partial solution to a problem of H. Ono, Reports on Mathematical Logic, no. 22 (1988). pp. 21–25.Google Scholar
  59. I. Nakamura [1983], Disjunction property for some intermediate predicate logics, Reports on Mathematical Logic, no. 15 (1983), pp. 33–39.Google Scholar
  60. I. Nishimura [1960], On formulas of one variable in intuitionistic prepositional calculus, The Journal of Symbolic Logic, 25 (1960), pp. 327–331.Google Scholar
  61. H. Ono [1972], Some results on the intermediate logics, Publ. RIMS, Kyoto University 8 (1972), pp. 117–130.Google Scholar
  62. H. Ono [1987], Some problems in intermediate predicate logics, Reports on Mathematical Logic, no. 21 (1987), pp. 55–67.Google Scholar
  63. G. F. Rose [1953], Prepositional calculus and realizability, Transaction of the American Mathematical Society 75 (1953), pp. 1–19.Google Scholar
  64. H. Sahlqvist [1975], Completeness and correspondence in the first and second order semantics for modal logic, Proceedings of the Third Scandinavian Logic Symposium, [S. Kanger (ed.), North-Holland, Amsterdam, 1975, pp. 110–143.Google Scholar
  65. K. Sasaki [1990], The disjunction property of the logics with axioms of only one variable, manuscript, 1990.Google Scholar
  66. V. B. Shekhtman [1977], On incomplete prepositional logics, Soviet Mathematical Doklady 235 (1977), pp. 542–545 (in Russian).Google Scholar
  67. V. B. Shekhtman [1978], Undecidable superintuitionistic calculus, Soviet Mathematical Doklady 240 (1978), pp. 549–552. (in Russian).Google Scholar
  68. T. Skura [1989], A complete syntactical characterization of the intuitionistic logic, Bulletin of the Section of Logic, 18 (1989), pp. 116–120.Google Scholar
  69. S. K. Sobolev [1977], On finite dimensional superintuitionistic logics, Izvestija of the USSR Academy of Sciences (Mathematics), 41 (1977), pp. 963–986 (in Russian).Google Scholar
  70. R. M. Solovay [1976], Provability interpretation of modal logic, Israel Journal of Mathematics 25 (1976), pp. 287–304.Google Scholar
  71. N.-Y. Suzuki [1990], Some syntactical properties of intermediate logics, to appear in Notre Dame Journal of Formal Logic. Google Scholar
  72. M. Szatkowski [1981], On fragments of Medvedev's logic, Studia Logica 40 (1981), pp. 39–54.Google Scholar
  73. F. L. Varpakhovski [1965], On non-realizability of disjunction of non-realizable formulas, Soviet Mathematical Doklady 161 (1965), pp. 1257–1258 (in Russian).Google Scholar
  74. M. Wajsberg [1938], Untersuchungen uber den Aussagenkalkul von A. Heyting, Wiadomości matematyczne 46 (1938), pp. 45–101.Google Scholar
  75. A. Wroński [1973], Intermediate logics and the disjunction property, Reports on Mathematical Logic, 1 (1973), pp. 39–51.Google Scholar
  76. A. Wroński [1976], Remarks on Halldén completeness of modal and intermediate logics, Bulletin of the Section of Logic 6 (1976), pp. 126–129.Google Scholar
  77. S. Zachorowski [1978], Remarks on interpolation property for intermediate logics, Reports on Mathematical Logic, 10 (1978), pp. 139–146.Google Scholar
  78. M. V. Zakharyashchev [1983], On intermediate logics, Soviet Mathematical Doklady 27 (1983), pp. 274–277.Google Scholar
  79. M. V. Zakharyashchev [1984], Normal modal logics containing S4, Soviet Mathematical Doklady 29 (1984), pp. 252–255.Google Scholar
  80. M. V. Zakharyashchev [1987], On the disjunction property of intermediate and modal logics, Mathematical USSR Zametki 42 (1987), pp. 729–738 (in Russian).Google Scholar
  81. M. V. Zakharyashchev [1988], Syntax and semantics of modal logics containing S4, Algebra and Logic 27 (1988), pp. 659–689 (in Russian).Google Scholar
  82. M. V. Zakharyashchev [1989], Syntax and semantics of intermediate logics, Algebra and Logic 28 (1989), pp. 402–429 (in Russian).Google Scholar
  83. M. V. Zakharyashchev [1989a], Modal companions of intermediate logics: syntax, semantics and preservation theorems, Mathematical USSR Sbornik 180 (1989), pp. 1415–1427 (in Russian).Google Scholar
  84. M. V. Zakharyashchev [1990], A new solution to a problem of T. Hosoi and H. Ono, manuscript, 1990.Google Scholar
  85. M. V. Zakharyashchev and S. V. Popov [1980], On complexity of countermodels for the intuitionistic calculus, preprint, Institute of Applied Mathematics, the USSR Academy of Sciences, 1980, no. 45 (in Russian).Google Scholar

Copyright information

© Polish Academy of Sciences 1991

Authors and Affiliations

  • Alexander Chagrov
    • 1
    • 2
    • 3
  • Michael Zakharyashchev
    • 1
    • 2
    • 3
  1. 1.Tver State UniversityTverUSSR
  2. 2.Institute of Applied MathematicsUSSR Academy of SciencesUSSR
  3. 3.MoscowUSSR

Personalised recommendations