# On the path and efficiency of two micromachines with rigid tails

- 66 Downloads
- 2 Citations

## Abstract

This paper reports on the results of investigation of the swimming of two different micro-machines. Mechanically each of these micro-machines consists of a head (containing an electromechanical power source) and a tail which moves relative to the head as a rigid body. The problem is approached theoretically by considering the types of movement which can occur for these micro-machines immersed in a viscous medium. The first micro-machine has a tail which oscillates in vertical plane, therefore the trajectory of this machine is in that plane too. The tail of the second micro-machine roates conically, so it produces a three dimensional helical path in space with its axis approximately along the direction of tail centreline.

Using the boundary element method for solving the traction equations on the surface of the tail, and a time-dependent Euler kinematic scheme to plot the path, the net propulsive force and torque, the translational velocity, angular velocity and the trajectory of each machine are calculated. Evaluation of the path and the direction of motion for each micro-machine using different dimensional parameters can give an idea of the efficiency for such machines with rigid tails.

## Keywords

Torque Angular Velocity Information Theory Rigid Body Power Source## Preview

Unable to display preview. Download preview PDF.

## References

**Banerjee, P. K.; Butterfield, R.**1981: Boundary Element Methods in Engineering Science. McGraw-Hill: 138–167Google Scholar- Bathe, K. J. 1982: Finite Element Procedures in Engineering Analysis. Prentice Hall: Englewood Cliffs, New Jersey.Google Scholar
- Brebbia, C. A.; Telles, J. C. F.; Wrobel, L. C. 1984: Boundary Element Techniques: Theory and Application in Engineering. Springer-Verlag, Berlin: 177–236Google Scholar
- Brennen, C.; Winet, H. 1977: Fluid Mechanics of propulsion by cilia and flagella. Ann. Rev. Fluid Mech. 9: 339–398Google Scholar
- Bush, M. B.; Tanner, R. I. 1983: Numerical solution of viscous flows using integral equation methods. Int. J. Num. Meth. Fluids. 3: 71–92Google Scholar
- Chwang, A. T.; Wu, T. Y. 1971: A note on the helical movement of microorganisms. Proc. R. Soc. Lond. B 178: 327–346Google Scholar
**Fujita, H.; Omodaka, A.**1987: Electrostatic actuators for Micromechatronics, Proc. IEEE Micro Robots and Teleoperators WorkshopGoogle Scholar- Gray, J.; Hancock, G. J. 1955: The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32: 802–814Google Scholar
- Hancock, G. J. 1953: The self propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. A 217: 96–121Google Scholar
- Higdon, J. J. L. 1979: A Hydrodynamic analysis of flagellar propulsion. J. Fluid Mech. 90: 685–711Google Scholar
**Ikuta, K.; Hirowatari, K.**1993: Real three dimensional micro fabrication using stereo lithography and metal molding, Proc. IEEE Micro Electro Mech. Sys., 42Google Scholar- Jones, M. S.; Le Baron, L.; Pedley, T. J. 1994: Biflagellate gyrotaxis in a shear flow. J. Fluid Mech. 281: 137–158Google Scholar
- Kim, S.; Karrila, S. J. 1991: Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann, BostonGoogle Scholar
**Kim, Y.; Katsurai, M.; Fujita, H.**1989: A proposal for a superconducting actuator using Meissner effect, Proc. IEEE Micro Electro Mechanical Systems Workshop, 107–112Google Scholar- Lighthill, M. J. 1976: Flagellar Hydrodynamics: the John Von Neumann Lecture 1975. SIAM Rev. 18: 161–229Google Scholar
**Menz, W.; Bacher, W.; Harmening, M.; Michel, A.**1991: The LIGA technique—A novel concept for microstructures and combination with Si-technologies by injection molding, Proc. IEEE Micro Electro Mech. Sys., 69Google Scholar- Myerscough, M. R.; Swan, M. A. 1989: A model for swimming unipolar spirilla. J. Theor. Biol. 139: 201–218Google Scholar
- O'Connor, L. 1994: Micro-machines tap actuating principles. J. Mech. Eng. Vol. 116, No. 8, 58–60Google Scholar
- Okano, K. 1994: Micromachining of micromachine parts, Int. J. Japan Soc. Prec. Eng., Vol. 28 No. 3, 196–199Google Scholar
- Phan-Thien, N.; Tran-Cong, T.; Ramia, M. 1987: A boundary element analysis of flagellar propulsion. J. Fluid Mech. 184: 533–549Google Scholar
- Ramia, M. 1991: Numerical model for the locomotion of spirilla. Biophys. J. 60: 1057–1078Google Scholar
**Ramia, M.**1993: Mathematical Modeling of Microorganism Locomotion, Ph.D. thesis, Univ. of Sydney, AustraliaGoogle Scholar**Ramia, M.; Phan-Thien, N.**1988: The motion of slender bodies in a viscous fluid a boundary element approach. Proceeding of Tenth International Congress of Rheology, Sydney, 14–19 Aug. P.H.T. Uhlherr, editor. Australian Society of RheologyGoogle Scholar- Ramia, M.; Tullock, D. L. 1990: Microorganism locomotion: application of fluid mechanics and kinematics. Proceedings of the fifth National Congress on Rheology, Melbourne, 27–29 June. L. Yeow and P.H.T. Uhlherr, editors. Australian Society of Rheology, Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia, 95–98Google Scholar
- Ramia, M.; Tullock, D. L.; Phan-Thien, N. 1993: The role of hydrodynamic interaction in the locomotion of microorganisms, Biophys. J. 65: 755–778Google Scholar
- Shreiner, K. E. 1971: The helix as a propeller of microorganisms. J. Biomech. 4: 73–83Google Scholar
- Sleigh, M. A. 1964: Flagellar movement of the sessile flagellates: Actinumonas, Codonosiga, Monas and Poteriodendron. Q. J. Microsc. Sci. 105: 405–414Google Scholar
**Suzuki, K.; Shimoyama, I.; Miura, H.; Ezura, Y.**1992: Creation of an insect-based microrobot with an external skeleton and elastic joints. Proc. IEEE Micro Electro Mechanical Systems Workshop, 190–194Google Scholar**Tang, W. C.; Coung, T.; Nguyen, H.; Howe, R. T.**1989: Laterally driven polysilicon resonant microstructures, Proc. IEEE Micro Electro Mechanical Systems Workshop, 53–59Google Scholar- Tran-Cong, T.; Phan-Thien, N. 1989: Stokes problems of multiparticle systems: a numerical method for arbitrary flows. Phys. Fluids A 1: 453–461Google Scholar
**Trimmer, W.; Jebens, R.**1989: An operational harmonic electrostatic motor, Proc. IEEE Micro Electro Mechanical Systems Workshop, 13–16Google Scholar**Tullock, D. L.**1993: New Developments and Applications of the Boundary Element Method for Some Problems in Elasticity and Viscous Flow, Ph.D. thesis, Univ. of Sydney, AustraliaGoogle Scholar- Winet, H.; Jahn, T. L., 1972: On the origin of bioconvection fluid instabilities in Tetrahymena culture systems. Biorheol. 9: 87–94Google Scholar
- Youngren, G. K.; Acrivos, A. 1975: Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech. 69: 377–403Google Scholar