Bioprocess Engineering

, Volume 4, Issue 5, pp 217–222 | Cite as

Modelling of the metabolism of Zymomonas mobilis growing on a defined medium

  • C. Posten


A structured model of Zymomonas mobilis is presented using fermentation data of a defined aspartate medium. After some remarks on the structure of the metabolism the model is derived by considering sub-models, e.g. balance equations, and by identifying the unknown parameters separately for each sub-model. Some results are the elemental composition of Zymomonas mobilis, a description of the substrate uptake during substrate limitation and the growth inhibition during substrate saturation. The results are shown as simulations and are discussed in relation to the inhibitory effect of ethanol on the bacterial cell.


Waste Water Fermentation Aspartate Water Management Water Pollution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols

Asp mg/dm3


ctr g/(dm3 · h)

carbondioxide transfer rate

D dm3/h

dilution rate

eE,X g/g

content of element E in the biomass X


matrix of the elemental composition of r


vector of the elemental composition of the biomass


vector of modelling parameters

ki,s dm3/(g · h)

inhibition of substrate uptake

ki,NH dm3/g

inhibition of ammonia uptake

ki,yxs dm3/g

inhibition of yield factor

kred mmol/g

degree of reduction of the biomass

ks kg/m3

Michaelis-Menten parameter

P kg/m3

product, ethanol

pex kg/m3

ethanol in outlet gas

pi kg/m3

inorganic phosphate

Pyr kg/m3



vector of specific turn-over rates

rE g/(g · h)

spec. uptake rate of element E

\(r_{NH_3 , max} \) mg/(g · h)

max. ammonium uptake rate

\(r_{NH_3 , max,0} \) mg/(g · h)

max. ammonium uptake rate without ethanol influence

rs,max g/(g · h)

maximal specific substrate uptake

S kg/m3

substrate, glucose

S0 kg/m3

feed concentration

X kg/m3


Yx,s g/g

yield factor

μ h−1

specific growth rate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmidt, W.; Schügerl, K.: Continuous ethanol production by Zymomonas mobilis on a synthetic medium. Chem. Eng. J. 36 (1987) B39-B48Google Scholar
  2. 2.
    Bellgardt, K.-H.: Modellbildung des Wachstums von Saccharomyces cerevisiae in Rührkesselreaktoren. Dissertation, Univ. Hannover, 1984Google Scholar
  3. 3.
    Nelder, J. A.; Mead, R.: A simplex method for function minimisation. The Computer Journal 7 (1965/66) 308: 313Google Scholar
  4. 4.
    Posten, C.; Thoma, M.: Modellierung des Stoffwechsels von Zymomonas mobilis. BioEngineering (1986) 22–28Google Scholar
  5. 5.
    Herbert, D.: The chemical composition of microorganisms. Symp. Soc. Gen. Microbiol. 11 (1961) 341 ff.Google Scholar
  6. 6.
    Roels, J. A.: Energetics and kinetics in biotechnology. Amsterdam: Elsevier Biomedical Press 1983Google Scholar
  7. 7.
    DiMarco, A. A.; Romano, A. H.: d-glucose transport system of Zymomonas mobilis. Appl. Environ. Microbiol. 49 (1985) 151–157Google Scholar
  8. 8.
    Rogers, P. L.; et al.: Ethanol production by Zymomonas mobilis. Adv. Biochem. Eng. 23 (1982) 37–84Google Scholar
  9. 9.
    Leao, C.; Van Uden, N.: Effects of ethanol and other alkanols on the ammonium transport system of Saccharomyces cerevisiae. Biotechnol. Bioeng. 25 (1983) 2085–2090Google Scholar
  10. 10.
    Stouthamer, A. H.: Energetic aspects of the growth of microorganisms. Symp. Soc. Gen. Microbiol. 27 (1977) 286–315Google Scholar
  11. 11.
    Pirt, S. J.: The maintenance energy of bacteria in growing cultures. Proc. of the Royal Society of London, Series B, 163, pp. 224–231Google Scholar
  12. 12.
    Genevois, L.: Essais de bilans de la fermentation alcoolique due aux cellules de Levures. Biochim. Biophys. acta 4 (1950) 179–192Google Scholar
  13. 13.
    Powell, M. J. D.: A hybrid method for nonlinear algebraic equations. Num. Meth. Nonlin. Algebr. Equ. (1970)Google Scholar
  14. 14.
    Ingram, L. O.: Microbial tolerance to alcohols: role of the cell membrane. TIBTECH (1986) 40–44Google Scholar
  15. 15.
    Bringer, S.; Sahm, H.: Ethanolproduktion mit Bakterien. BTF 2 (1985) 156–160Google Scholar
  16. 16.
    Jöbses, I. M. L.; et al.: Mathematical modelling of growth and substrate conversion of Zymomonas mobilis. Biotechnol. Bioeng. 27 (1985) 984–995Google Scholar
  17. 17.
    deBoks, P. A.; van Eybergen, G. C.: Continuous ethanol production using cell recycle with a settler. Biotechnol. Lett. 3 (1981) 577–582Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • C. Posten
    • 1
    • 2
  1. 1.Arbeitsbereich Regelungstechnik und SystemdynamikTU Hamburg-HarburgFRG
  2. 2.Hamburg 90FRG

Personalised recommendations