Bioprocess Engineering

, Volume 9, Issue 2–3, pp 83–90 | Cite as

The influence of mechanical forces on the morphology and penicillin production of Penicillium chrysogenum

  • H. Y. Makagiansar
  • P. Ayazi Shamlou
  • C. R. Thomas
  • M. D. Lilly


The influence of mechanical forces resulting from the rotation of (multiple) turbine impellers on the morphology and penicillin production of Penicillium chrysogenum Panlabs P-1 was investigated in batch fermentations using semi-defined media. Experiments were carried out at three different scales of fermentation, 5 dm3,100 dm3 and 1000 dm3 working volume, with the impeller tip speed ranging from 2.5 to 6.3 m/s. Throughout all fermentations, the dissolved oxygen concentration never fell below the critical value for maximum penicillin production. Morphological measurements using image analysis showed that the mean main hyphal length and mean hyphal growth unit increased during the rapid growth period and then decreased to a relatively constant value dependent on the agitation intensity. The specific rate of penicillin production (qpen)and the average main hyphal length during the linear penicillin production phase were lower at high agitation speed, which promoted more rapid mycelial fragmentation and a higher branching frequency. Comparison of the results from the three scales showed that impeller tip speed is a poor scale up parameter whereas a term based on mycelial circulation through the zone of high energy dissipation fitted the data well.


Fermentation Batch Fermentation Dissolve Oxygen Concentration Agitation Speed Hyphal Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols

C.E.R. mmol/(dm3h)

Carbon dioxide evolution rate

D m

Impeller diameter

D.O.T. % air saturation

Dissolved oxygen tension

Le μ m

Mean effective length or main hyphal length

O.U.R. mmol/(dm3h)

Oxygen uptake rate


Total power dissipation

qpen units/(mg dry cell weight h) rate

Specific penicillin production


Respiratory quotient


Circulation frequency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dion, W. M.; Carilli, A.; Sermonti, G.; Chain, E. B.: The effect of mechanical agitation on the morphology of Penicillium chrysogenum Thom in stirred fermentors. Rend. Ist. Super. de Sanita 17 (1954) 187–205Google Scholar
  2. 2.
    Smith, M. G.; Calam, C. T.: Variations in inocula and their influence on the productivity of antibiotic fermentations. Biotechnol. Lett. 2 (1980) 261–266Google Scholar
  3. 3.
    Clark, D. S.; Ito, K.; Horitsu, H.: Effect of manganese and other heavy metals on submerged citric acid fermentation of molasses. Biotechnol. Bioeng. 8 (1966) 465–471Google Scholar
  4. 4.
    Al Obaidi, Z. S.; Berry, D. R.: cAMP concentration, morphological differentiation and citric acid production in Aspergillus niger. Biotechnol. Lett. 2 (1980) 5–1Google Scholar
  5. 5.
    Märkl, H.; Bronnenmeier, R.: Mechanical stress and microbial production. In: Brauer, H. (Ed.): Fundamentals of Biochemical Engineering, vol. 2, pp. 370–392. Germany; VCH Verlagsgesell schaft 1985Google Scholar
  6. 6.
    van't Riet, K.; Smith, J. M.: The trailing vortex system produced by Rushton turbine agitators. Chem. Eng. Sci. 30 (1975) 1093–1105Google Scholar
  7. 7.
    König, B.; Seewald, C.; Schügerl, K.: Process engineering investigations of penicillin production. Eur. J. Appl. Microbiol. Biotechnol. 12 (1981) 205–211Google Scholar
  8. 8.
    Belmar Beiny, M. T.; Thomas, C. R.: Morphology and clavulanic acid production of Streptomyces clavuligerus: effect of stirrer speed in batch fermentation. Biotechnol. Bioeng. 37 (1991) 456–462Google Scholar
  9. 9.
    Smith, J. J.; Lilly, M. D.; Fox, R. I.: The effect of agitation on the morphology and penicillin production of Penicillium chrysogenum. Biotechnol. Bioeng. 35 (1990) 1011–1023Google Scholar
  10. 10.
    Packer, H. L.; Thomas, C. R.: Morphological measurements on filamentous microorganisms by fully automatic image analysis. Biotechnol. Bioeng. 35 (1990) 870–881Google Scholar
  11. 11.
    Packer, H. L.; Keshavarz-Moore, E.; Lilly, M. D.; Thomas, C. R.: Estimation of cell volume and biomass of Penicillium chrysogenum using image analysis. Biotechnol. Bioeng. 394 (1992) 384–391Google Scholar
  12. 12.
    Metz, B.; de Bruijn, E. W.; van Suijdam, J. C.: Method for quantitative representation of the morphology of molds. Biotechnol. Bioeng. 23 (1981) 149–162Google Scholar
  13. 13.
    Vardar, F.; Lilly, M. D.: Effect of cycling dissolved oxygen concentrations on product formation in penicillin fermentation. Eur. J. Appl. Microbiol. Biotechnol. 14 (1982) 203–211Google Scholar
  14. 14.
    van Suijdam, J. C.; Metz, B.: Influence of engineering variables upon the morphology of filamentous molds. Biotechnol. Bioeng. 23 (1981) 111–148Google Scholar
  15. 15.
    Rushton, J. H.; Costich, E. W.; Everett, H. J.: Power characteristics of mixing impellers Part II. Chem. Eng. Prog. 46 (1950) 467–476Google Scholar
  16. 16.
    Michel, B. J.; Miller, S. A.: Power requirements of gas-liquid agitated system. AIChE J. 8 (1962) 262–266Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • H. Y. Makagiansar
    • 1
  • P. Ayazi Shamlou
    • 1
  • C. R. Thomas
    • 2
  • M. D. Lilly
    • 1
  1. 1.Advanced Centre for Biochemical Engineering Department of Chemical and Biochemical EngineeringUniversity College LondonLondonUK
  2. 2.SERC Centre for Biochemical Engineering, School of Chemical EngineeringUniversity of BirminghamEdgbastonUK

Personalised recommendations