, Volume 10, Issue 3, pp 193–203 | Cite as

Manometric Assessment of interstitial microalgae production in two estuarine sediments

  • Raymond Z. Riznyk
  • Harry K. Phinney


The potential production of estuarine interstitial microalgae from two tidal flats differing in sediment texture was determined manometrically. Sediment cores from the Southbeach tidal flat showed a maximum amount of productivity in the lower intertidal zone whereas sediment cores from Sally's Bend showed no production in this zone. The upper cm3 of sediment from both tidal flats had a higher amount of gross potential production than subsurface core sections. the sandy substratum from Southbeach had an estimated gross annual production of 275–325 g C m-2 yr-1 whereas the silty substratum of Sally's Bend had an estimated value of 0–125 g C m-2 yr-1. Respiration/Photosynthesis (R/P) ratios indicate that respiration often exceeds photosynthesis on the Sally's Bend tidal flat.


Respiration Photosynthesis Microalgae Sediment Core Maximum Amount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bunt, J. S.: Observations on photoheterotrophy in a marine diatom. J. Phycol. 5, 37–42 (1969).Google Scholar
  2. Currie, R. I.: Pigments in zooplankton faeces. Nature (Lond.) 193, 956–957 (1962).Google Scholar
  3. Fenchel, T. M., Riedl, R. J.: The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7, 225–268 (1970).Google Scholar
  4. Gilson, W. E.: Differential respirometer of simplified and improved design. Science 141, 531–532 (1963).Google Scholar
  5. Gomoiu, M. T.: Some quantitative data on light penetration in sediments. Helgoland. Wiss. Meeres. 15, 120–127 (1967).Google Scholar
  6. Grøntved, J.: Preliminary report on the productivity of microbenthos and phytoplankton in the Danish Wadden Sea. Medd. Danm. Fisk. Havund. 3, 347–378 (1962).Google Scholar
  7. Hamilton, R. D., Greenfield, L. J.: Manometric assay of the metabolic activity of marine sediment micro-biota. Z. allg. Mikrobiol. 7, 19–27 (1967).Google Scholar
  8. Hargrave, B. T.: The effect of a deposit-feeding amphipod on the metabolism of benthic microflora. Limnol. Oceanogr. 15, 21–30 (1970).Google Scholar
  9. Hoch, G., Owens, O. V. H., Kok, B.: Photosynthesis and respiration. Arch. Biochem. 101, 171–180 (1963).Google Scholar
  10. Hopkins, J. T.: A study of the diatoms of the Ouse Estuary, Sussex. I. The movement of the mud-flat diatoms in response to some chemical and physical changes. J. marine biol. Ass. 43, 653–663 (1963).Google Scholar
  11. Jackson, W. A., Volk, R. J.: Photorespiration. Ann. Rev. Plant Physiol. 21, 385–432 (1970).Google Scholar
  12. Kulm, L. D., Byrne, J. V.: Sedimentary response to hydrography in an Oregon estuary. Mar. Geol. 4, 85–118 (1966).Google Scholar
  13. Leach, J. H.: Epibenthic algal production in an intertidal mudflat. Limnol. Oceanogr. 15, 514–521 (1970).Google Scholar
  14. Lewin, J. C., Lewin, R. A.: Autotrophy and heterotrophy in marine littoral diatoms. Canad. J. Microbiol. 6, 127–134 (1960).Google Scholar
  15. Martin, J. V.: Salinity as a factor controlling the distribution of benthic estuarine diatoms. Ph. D. Thesis, 114 p. Oregon State University (1970).Google Scholar
  16. McIntire, C. D., Overton, W. S.: Distributional patterns in assemblages of attached diatoms from Yaquina Estuary, Oregon. Ecology 52, 758–777 (1971).Google Scholar
  17. Munro, A. L. S., Brock, T. D.: Distinction between bacterial and algal utilization of soluble substrates in the sea. J. gen. Microbiol. 51, 35–42 (1968).Google Scholar
  18. Oppenheimer, C., Wood, E. J. F.: Note on the effect of contamination on a marine slough and the vertical distribution of unicellular plants in the sediment. Z. allg. Mikrobiol. 2, 45–47 (1962).Google Scholar
  19. Palmer, J. D.: The role of moisture and illumination on the expression of the rhythmic behavior of the diatom Hantzschia amphioxys. Biol. Bull. Woods Hole 119, 330 (1960).Google Scholar
  20. Pamatmat, M. M.: Ecology and metabolism of a benthic community on an intertidal sandflat. Int. Rev. ges. Hydrobiol. 53, 211–298 (1968).Google Scholar
  21. Pardee, A. B.: Measurement of oxygen uptake under controlled pressure of carbon dioxide. J. biol. Chem. 179, 1085–1091 (1949).Google Scholar
  22. Pomeroy, L. R.: Algal productivity in salt marshes of Georgia. Limnol. Oceanogr. 4, 386–398 (1959).Google Scholar
  23. Riznyk, R. Z.: Ecology of benthic microalgae of estuarine intertidal sediments. Ph. D. Thesis, 196 p. Oregon State University (1969).Google Scholar
  24. Riznyk, R. Z., Phinney, H. K.: Distribution of intertidal phytopsammon in an Oregon estuary. Mar. Biol. 13, 318–324 (1972).Google Scholar
  25. Steele, J. H., Baird, I. E.: Production ecology of a sandy beach. Limnol. Oceanogr. 13, 14–25 (1968).Google Scholar
  26. Strickland, J. D. H.: Measuring the production of marine phytoplankton. Fish. Res. Bd. Can., Bull. 122 (1960).Google Scholar
  27. Taylor, W. R.: Light and photosynthesis in intertidal benthic diatoms. Helgoland. Wiss. Meeres. 10, 29–37 (1964).Google Scholar
  28. Tietjen, J. H., Lee, J. J., Rullman, J., Greengart, A., Trompeter, J.: Gnotobiotic culture and physiological ecology of the marine nematode Rhabditis marina Bastian. Limnol. Oceanogr. 15, 535–543 (1970).Google Scholar
  29. Umbreit, W. W., Burris, R. H., Stauffer, J. F.: Manometric techniques, 4th ed. Minneapolis: Burgess 1964.Google Scholar
  30. ZoBell, C. E.: Marine microbiology. Waltham, Mass: Chronica Botanica 1946.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Raymond Z. Riznyk
    • 1
  • Harry K. Phinney
    • 1
  1. 1.Department of BotanyOregon State UniversityCorvallisUSA

Personalised recommendations