, Volume 65, Issue 6, pp 307–318 | Cite as

Representation of complex visual stimuli in the brain

  • O. D. Creutzfeldt
  • H. C. Nothdurft


A method was developed to investigate transfer properties of neurons in the visual system using pictures of complex visual stimuli. The picture is moved over the receptive field of a neuron so that it can scan it along programmed lines. The activity of the neuron during the scanning procedure is presented in a two-dimensional dot display on scale with the original picture. By superposition of the stimulus and the transfer pattern, one can find out to which detail of a stimulus the neuron responds. Neurons in the first intracerebral relay of the visual system, the lateral geniculate body, reduce a complex stimulus, such as a photograph of a natural environment, to its contours. Cortical cells only respond to contours either of a limited or of a wider range of orientations (simple and complex cells, respectively). But the course of contours is only described by a continuous representation of these contours in the cortical map of the visual field. This is done by the simple cells, which have small receptive fields and thus a higher resolving power, whereas complex cells with their large receptive fields monitor the approximate location of a moving stimulus. The function of these two classes of neurons is discussed in terms of visual behavior, i.e., for fixation, hold, and binocular vergence movements (simple cells), and for detection of moving objects and motor command signals towards these objects (complex cells). These functions are an important condition for foveal vision which is the basis of perception in primates. An important function of orientation sensitivity of simple cells may be the binocular alignment of contours in binocular fusion and stereoscopic vision.


Receptive Field Complex Cell Simple Cell Command Signal Visual Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albus, K.: Exp. Brain Res. 24, 159 (1975)Google Scholar
  2. 2.
    Albus, K.: ibid. 24, 181 (1975)Google Scholar
  3. 3.
    Barlow, H.B.: Perception 1, 371 (1975)Google Scholar
  4. 4.
    Bishop, P.O., in: Handbook of Sensory Physiology, Vol. VII/3A, p. 255 (ed. R. Jung). Berlin: Springer 1973Google Scholar
  5. 5.
    Bishop, P.O., Henry, G.H.: Invest. Ophthalmol. 11, 346 (1972)Google Scholar
  6. 6.
    Creutzfeldt, O., in: Progress in Brain Research, Vol. 45, p. 451 (eds. M.A. Corner, D.F. Swaab). Amsterdam: Elsevier 1976Google Scholar
  7. 7.
    Creutzfeldt, O.D., in: Biophysik — Ein Lehrbuch, p. 629 (ed. W. Hoppe, et al.). Berlin-Heidelberg: Springer 1977Google Scholar
  8. 8.
    Creutzfeldt, O.: Physiological Conditions of Consciousness. Int. Congr. of Neurology, Amsterdam 1977; Excerpta Med. Congr. Ser. (in press)Google Scholar
  9. 9.
    Creutzfeldt, O., Innocenti, G.M., Brooks, D.: Exp. Brain Res. 21, 315 (1974)Google Scholar
  10. 10.
    Creutzfeldt, O.D., Ito, M.: ibid. 21, 324 (1968)Google Scholar
  11. 11.
    Creutzfeldt, O.D., Kuhnt, U., Benevento, L.A.: ibid. 21, 251 (1974)Google Scholar
  12. 12.
    Creutzfeldt, O., Rager, G., in: Brain Mechanisms and Conscious Experience (ed. P. Buser). Amsterdam: Elsevier (in press)Google Scholar
  13. 13.
    Dreher, B.: Invest. Ophthalmol. 11, 355 (1972)Google Scholar
  14. 14.
    Hammond, P.: J. Physiol. (Lond.) 242, 99 (1974)Google Scholar
  15. 15.
    Hammond, P., MacKay, D.M.: Exp. Brain Res. 30, 275 (1977)Google Scholar
  16. 16.
    Heggelund, P., Albus, K.: ibid. 30, 275 (1977) (in press)Google Scholar
  17. 17.
    Heggelund, P., Hohmann, A.: ibid. 23, 211 (1975)Google Scholar
  18. 18.
    Hubel, D.H., Wiesel, T.N.: J. Physiol. (Lond.) 160, 106 (1962)Google Scholar
  19. 19.
    Hubel, D., Wiesel, T.: J. Neurophysiol. 28, 229 (1965)Google Scholar
  20. 20.
    Hubel, D., Wiesel, T.: J. Comp. Neurol. 158, 267 (1974)Google Scholar
  21. 21.
    Julesz, B.: Foundation of Cyclopean Perception. Chicago Univ. 1971Google Scholar
  22. 22.
    Lee, B.B., et al.: Exp. Brain Res. 27, 301 (1977)Google Scholar
  23. 23.
    Lee, B.B., Cleland, B.G., Creutzfeldt, O.D.: ibid. 30, 527 (1977)Google Scholar
  24. 24.
    Movshon, J.A.: J. Physiol. (Lond.) 249, 445 (1975)Google Scholar
  25. 25.
    Noda, H., et al.: Exp. Brain Res. 12, 389 (1971)Google Scholar
  26. 26.
    Nothdurft, H.C., Creutzfeldt, O.: Science (in press)Google Scholar
  27. 27.
    Pettigrew, J.D., Nikara, T., Bishop, P.O.: Exp. Brain Res. 6, 373 (1968)Google Scholar
  28. 28.
    Sanides, D., Donate-Oliver, F., in: Symposium on Architectonics of the Cerebral Cortex (ed. M.A.B. Brazier). New York: Raven Press 1977Google Scholar
  29. 29.
    Tusa, R.J., Palmer, L.A., Rosenquist, A.C.: J. Comp. Neurol. 177, 213 (1977)Google Scholar
  30. 30.
    Wässle, H., Creutzfeldt, O.D.: J. Neurophysiol. 36, 13 (1973)Google Scholar
  31. 31.
    Yarbus, A.: Eye Movements and Vision. New York: Raven Press 1967Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • O. D. Creutzfeldt
    • 1
  • H. C. Nothdurft
    • 1
  1. 1.Department of NeurobiologyMax Planck Institute of Biophysical ChemistryGöttingen

Personalised recommendations