Advertisement

Journal of Materials Science

, Volume 31, Issue 3, pp 829–833 | Cite as

TEM study of the structure of GaAs on vicinal Si (001) surface grown by MBE

  • Y. Yang
  • H. Chen
  • Y. Q. Zhou
  • X. B. Mei
  • Q. HuanG
  • J. M. Zhou
  • F. H. Li
Papers
  • 60 Downloads

Abstract

Molecular beam epitaxy (MBE) grown GaAs films on Si substrates (0 0 1) 4° off towards 〈1 1 1〉 A and towards 〈1 1 1〉 B, were examined by means of transmission electron microscopy (TEM). The results indicate that in both samples, threading dislocations in the GaAs epilayer are blocked mainly in a thin layer near the GaAs-Si interface. This thin layer is like an inner interface, consisting of pyramidal islands and is flatter on the As growth surface than that on the Ga growth surface. In the type B sample, the density of dislocations is lower, the inner interface is flatter and the number of twins is much larger than that in the type A sample.

Keywords

Polymer Microscopy Electron Microscopy Transmission Electron Microscopy GaAs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. OTSUKA, C. CHOI, Y. NAKAMURA, S. NAGAKURA, R. FISHER, C. K. PENG and H. MORKOC, Appl. Phys. Lett. 49 (1986) 277.CrossRefGoogle Scholar
  2. 2.
    J. B. POSTHILL, J. D. L. TARN, K. DAS, T. P. HUMPHREYS and N. R. PARIKH, ibid., 53 (1988) 1207.CrossRefGoogle Scholar
  3. 3.
    H. L. TSAI and Y. C. KAO, J. Appl. Phys. 67 (1990) 2862.CrossRefGoogle Scholar
  4. 4.
    T. C. CHONG and G. FONSTAD, J. Vac. Sci. Technol. B5 (1987) 815.CrossRefGoogle Scholar
  5. 5.
    N. CHANG, R. PEOPLE, F. A. BAIOCCHI, K. W. WECHT and A. Y. CHO, Appl. Phys. Lett. 49 (1986) 815.CrossRefGoogle Scholar
  6. 6.
    L. W. LEE, H. SHICHIJO, H. L. TSAL and R. J. MATYI, ibid. 50 (1987) 31.CrossRefGoogle Scholar
  7. 7.
    N. EL-MASRY, J. C. L. TARN, T. P. HUMPHREYS, N. HAMAGUCHI, N. K. KARAM and S. M. BEDAIR, ibid. 51 (1987) 1608.CrossRefGoogle Scholar
  8. 8.
    R. FISHER, D. NEUMAN, H. ZABEL, H. MORKOC, C. CHOI and N. OTSUKA, ibid. 48 (1986) 1223.CrossRefGoogle Scholar
  9. 9.
    S. SHARAN and J. NARAYAN, J. Appl. Phys. 66 (1989) 2376.CrossRefGoogle Scholar
  10. 10.
    D. K. CHOI, S. M. KOCH, T. TAKAI, T. HALICIOGLU and W. A. TILLER, J. Vac. Sci. Technol. B6 (1988) 1140.CrossRefGoogle Scholar
  11. 11.
    S. F. FANG, K. ADOMI, S. LYER, H. MORKOC, H. ZABEL, C. CHOI and N. OTSUKA, J. Appl. Phys. 68 (1990) R31.CrossRefGoogle Scholar
  12. 12.
    K. F. LONGENBACH and W. I. WANG, Appl. Phys. Lett. 59 (1991) 2427.CrossRefGoogle Scholar
  13. 13.
    H. L. TSAI and J. MATYI, ibid. 55 (1989) 265.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Y. Yang
    • 1
  • H. Chen
    • 2
    • 1
  • Y. Q. Zhou
    • 2
    • 1
  • X. B. Mei
    • 2
    • 1
  • Q. HuanG
    • 2
    • 1
  • J. M. Zhou
    • 2
    • 1
  • F. H. Li
    • 2
    • 1
  1. 1.National Laboratory for SuperconductivityChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Institute of PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations