Advertisement

Journal of Materials Science

, Volume 31, Issue 3, pp 649–654 | Cite as

Microstructure and oxidation resistance of SiC coated carbon-carbon composites via pressureless reaction sintering

  • Chen -Chi M. Ma
  • Nyan -Hwa Tai
  • Wen -Chi Chang
  • Huai -Te Chao
Papers

Abstract

The effects of processing parameters on the microstructure and oxidation resistance of silicon carbide (SiC) coated carbon-carbon (C-C) composites were investigated. C-C composites were made from plain woven carbon cloths and phenolic derived carbon matrices in the laboratory. Pressureless reaction sintering has been used to apply SiC coating to C-C composites using epoxy resin and silicon powder as the precursor. Results showed that the oxidation resistance of C-C composites was enhanced by coating with SiC. The pressureless reaction sintering process exhibits good processability. β-SiC was formed after heat treatment at 1800 °C and the α-SiC formed after heat treatment at 2200 °C. The SiC coated C-C composites exhibit good oxidation resistance at 1000 °C for 100 h under the test conditions.

Keywords

Polymer Silicon Microstructure Carbide Heat Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. FITZER and W. HUTTNER, J. Phys. D: Appl. Phys. 14 (1981) 347.Google Scholar
  2. 2.
    E. FITZER, Carbon 25 (1987) 163.Google Scholar
  3. 3.
    Idem, Pure & Appl. Chem. 60 (1988) 287.Google Scholar
  4. 4.
    J. D. BUCKLEY, Ceram. Bull. 67 (1988) 364.Google Scholar
  5. 5.
    A. J. KLEIN, Adv. Compos. 4 (1989) 38.Google Scholar
  6. 6.
    C. F. LEWIS, Mater. Eng. 106 (1989) 27.Google Scholar
  7. 7.
    R. WEISS, in International Symposium on Carbon 1990, Tsukuba, November 1990, edited by M. INAGAKI (Carbon Society of Japan, Tokyo, 1990), Plenary C, pp. 10–15.Google Scholar
  8. 8.
    G. W. MEETHAM, J. Mater. Sci. 26 (1991) 853.Google Scholar
  9. 9.
    G. SAVAGE, “Carbon-Carbon Composites” (Chapman & Hall, London, 1993) pp. 137–9.Google Scholar
  10. 10.
    P. R. BECKER, Ceram. Bull. 60 (1981) 1210.Google Scholar
  11. 11.
    J. R. STRIFE and J. E. SHEEHAN, ibid. 67 (1988) 369.Google Scholar
  12. 12.
    K. L. LUTHRA, Carbon 26 (1988) 217.Google Scholar
  13. 13.
    D. W. MCKEE, ibid. 25 (1987) 551.Google Scholar
  14. 14.
    Idem, ibid. 24 (1986) 737.Google Scholar
  15. 15.
    C. T. HO and D. D. L. CHUNG, ibid. 28 (1990) 815.Google Scholar
  16. 16.
    S. RAGAN and G. T. EMMERSON, in Extended Abstracts and Program, 20th Biennial Conference on Carbon, Santa Barbara, CA, July 1991 (Electrochemical Society Inc., Manchester, NH, 1991) p. 339.Google Scholar
  17. 17.
    S. RAGAN and G. T. EMMERSON, ibid. p. 428.Google Scholar
  18. 18.
    J. W. DAVIS and A. A. HAAS, J. Nucl. Mater. 195 (1992) 166.Google Scholar
  19. 19.
    W. KOWBEL, Y. HUANG and H. TSOU, Carbon 31 (1993) 355.Google Scholar
  20. 20.
    A. J. LUCCHESI, J. C. HAY and K. W. WHITE, J. Mater. Res. 7 (1992) 1795.Google Scholar
  21. 21.
    J. COVINO, K. KLEMM and J. DYKEMA, Mater. Perf. 30 (1991) 75.Google Scholar
  22. 22.
    M. D. ALVEY and P. M. GEORGE, Carbon 29 (1991) 523.Google Scholar
  23. 23.
    K. MUMTAZ, J. ECHIGOYA, T. HIRAI and Y. SHINDO, J. Mater. Sci. Lett. 12 (1993) 1411.Google Scholar
  24. 24.
    K. MUMTAZ, J. ECHIGOYA and M. TAYA, J. Mater. Sci. 28 (1993) 5521.Google Scholar
  25. 25.
    J. P. QIAN, X. LIU, P. Y. LI and Z. GUO, J. Nucl. Mater. 191 (1992) 340.Google Scholar
  26. 26.
    K. SUGIYAMA and E. YAMAMOTO, J. Mater. Sci. 24 (1989) 3756.Google Scholar
  27. 27.
    D. KEHR, K. BRENNFLECK and R. WEISS, High Temp. -High Press. 22 (1990) 693.Google Scholar
  28. 28.
    F. J. BUCHANAN and J. A. LITTLE, Surf. Coat. Technol. 46 (1991) 217.Google Scholar
  29. 29.
    Idem., ibid. 53 (1992) 137.Google Scholar
  30. 30.
    T. M. WU, W. C. WEI and S. E. HSU, Mater. Chem. Phys. 33 (1993) 208.Google Scholar
  31. 31.
    W. LIU, S. SUN, M. LI and Y. WEI, J. Mater. Sci. Lett. 12 (1993) 886.Google Scholar
  32. 32.
    Y. K. KING and J. Y. LEE, Carbon 31 (1993) 1031.Google Scholar
  33. 33.
    F. J. BUCHANAN and J. A. LITTLE, J. Mater. Sci. 28 (1993) 2324.Google Scholar
  34. 34.
    H. MAHFUZ, P. S. DAS, S. JEELANI, D. M. BAKER and S. A. JOHNSON, ibid. 28 (1993) 5880.Google Scholar
  35. 35.
    F. J. BUCHANAN and J. A. LITTLE, Corr. Sci. 35 (1993) 1243.Google Scholar
  36. 36.
    H. MAHFUZ, D. XUE, S. JEELANI, D. M. BAKER and S. A. JOHNSON, Comp. Sci. Technol. 50 (1994) 411.Google Scholar
  37. 37.
    T. M. WU, W. C. WEI and S. E. HSU, Carbon 29 (1991) 1257.Google Scholar
  38. 38.
    Idem, J. Euro. Ceram. Soc. 9 (1992) 351.Google Scholar
  39. 39.
    Idem, Ceram. Int. 18 (1992) 167.Google Scholar
  40. 40.
    J. W. PATTEN, R. W. MOSS and B. A. FORCHT, US Patent 4 500 602 (1985).Google Scholar
  41. 41.
    T. M. WU, W. C. WEI and S. E. HSU, Chinese J. Mater. Sci. 22 (1990) 70.Google Scholar
  42. 42.
    M. KONDO, T. MORIMOTO, A. KOHYAMA and H. TSUNAKAWA, in ICCM-9, Vol. III, edited by A. MIRAVETE (Woodhead Publishing, Machid, 1993) 703.Google Scholar
  43. 43.
    A. N. SHURSHAKOV, in “Refractory Carbides”, edited by G. V. SAMSNOV (Consultants Bureau, NY, 1974) pp. 125–32.Google Scholar
  44. 44.
    K. NEGITA, J. Amer. Ceram. Soc. 69 (1986) 308.Google Scholar
  45. 45.
    G. H. WROBLEWSKA, Ceram. Int. 16 (1990) 201.Google Scholar
  46. 46.
    R. W. OLESINSKI, Bull. Alloy Phase Diag. 5 (1984) 486.Google Scholar
  47. 47.
    P. L. WALKER, Carbon 29 (1991) 411.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Chen -Chi M. Ma
    • 2
  • Nyan -Hwa Tai
    • 2
  • Wen -Chi Chang
    • 1
    • 2
  • Huai -Te Chao
    • 1
    • 2
  1. 1.Institute of Chemical EngineeringNational Tsing-HuaUniversityHsinchu, TaiwanPeople’s Republic of China
  2. 2.Materials Science CenterNational Tsing-HuaUniversityHsinchu, TaiwanPeople’s Republic of China

Personalised recommendations