Advertisement

Journal of Materials Science

, Volume 31, Issue 17, pp 4647–4654 | Cite as

Structure and mechanical properties of internally hydrided Mg-IIIa transition metal alloys

  • S. Morozumi
  • H. Saikawa
  • T. Minegishi
  • M. Matsuyama
  • K. Watanabe
  • M. Iijima
  • M. Ohtsuki
Article

Abstract

Magnesium alloys containing IIIa transition metals, such as Sc, Y and Ho, respectively, were hydrogenated at 773 K and examined for microstructure, X-ray diffraction pattern, micro-Vickers hardness, and tensile properties at room and high temperatures. Results obtained are as follows:
  1. 1.

    The alloys, respectively, have been internally hydrided and have precipitated hydrides of the IIIa transition metals as small flake-like particles in the matrix and at grain boundaries, as well as twin boundaries.

     
  2. 2.

    The dispersed hydride particles do not necessarily contribute to further hardening of the alloys at room temperature and up to near 673 K.

     
  3. 3.

    However, the dispersed particles are very stable and seem to improve mechanical properties of the alloys above 673 K.

     
  4. 4.

    Presumed relationships of crystallographic coincidence between the matrix and hydrides have been obtained.

     

Keywords

Polymer Microstructure Mechanical Property Magnesium Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.F. Emley, “Principles of magnesium technology” (Pergamon Press Ltd., Oxford, 1966).Google Scholar
  2. 2.
    F. Sauerwald, Z. Metallkunde 40 (1949) 44.Google Scholar
  3. 3.
    J. Hérenguel and J. Boghen, Memo. Scien. Rev. Mét. 56 (1959) 371.Google Scholar
  4. 4.
    H. Taschow and F. Sauerwald, Z. Metallkunde 52 (1961) 135.Google Scholar
  5. 5.
    P. Lelong, J. Dosdat, J. Boghen and J. Hérenguel, J. Nucl. Mater. 3 (1961) 222.CrossRefGoogle Scholar
  6. 6.
    J. Hérenguel, Ibid. 8 (1963) 12.CrossRefGoogle Scholar
  7. 7.
    G.T. Higgins and B.W. Pichles, Ibid. 8 (1963) 160.CrossRefGoogle Scholar
  8. 8.
    R.P. Kent and T.C. Wells, Ibid. 8 (1963) 198.CrossRefGoogle Scholar
  9. 9.
    E.A. Walker and P.A. Fisher, Ibid. 8 (1963) 179.CrossRefGoogle Scholar
  10. 10.
    R.E. Squires, R.T. Weiner and M. Phillips, Ibid. 8 (1963) 77.LCrossRefGoogle Scholar
  11. 11.
    J. Mcguire and C.P. Kempter, J. Chem. Phys. 33 (1960) 1584.CrossRefGoogle Scholar
  12. 12.
    C.E. Lundin and J.P. Blackledge, J. Electrochem. Soc. 109 (1962) 838.CrossRefGoogle Scholar
  13. 13.
    A. Pebler and W.E. Wallace, J. Phys. Chem. 66 (1962) 148.CrossRefGoogle Scholar
  14. 14.
    D.C. Joy, D.L. Newbury and D.E. Davidson, J. Appl. Phys. 53 (1982) R81.CrossRefGoogle Scholar
  15. 15.
    R.S. Busk, “Magnesium products design” (Marcel Dekker, Inc., New York, 1987).Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • S. Morozumi
    • 1
    • 3
  • H. Saikawa
    • 2
  • T. Minegishi
    • 2
  • M. Matsuyama
    • 3
  • K. Watanabe
    • 3
  • M. Iijima
    • 4
  • M. Ohtsuki
    • 4
  1. 1.Magnesium Research CenterChiba Institute of TechnologyNarashinoJapan
  2. 2.Department of Metallurgical EngineeringChiba Institute of TechnologyNarashinoJapan
  3. 3.Hydrogen Isotope Research CenterToyama UniversityToyamaJapan
  4. 4.Mitsubishi Materials Corp.TokyoJapan

Personalised recommendations