Journal of Materials Science

, Volume 31, Issue 17, pp 4573–4580 | Cite as

Thermodynamical approach to the brittle fracture of dry plasters

  • P. Coquard
  • R. Boistelle


The evolution of the fracture toughness, Klc, and fracture energy, Glc, of set plasters was determined on notched beams as a function of sample porosity, P, and characteristic size, W. Toughness was found to decrease with decreasing crack width. For set plasters of 57.7% porosity, the lowest toughness measured was Klc=0.13 MPa m1/2 for a crack width of 0.2 mm. For this crack width, fracture toughness and fracture energy linearly changed with porosity: Klc=0.5 1–1.3 P) MPa m1/2 and Glc= 13.47 (1–1.12 P) Jm−2. Dense plasters were more difficult to break than porous ones. The fracture energies were affected by the velocity of the fracture propagation, which induces damaging and multicracking of the material, so that the roughly calculated chemical surface energy of set plaster was too high. After correction it was estimated to be 0.4 J m −2. Finally, because toughness increased with increasing sample size, it was concluded that fracture toughness and energy were not intrinsic parameters of the material. On the other hand, for our sample porosities and sizes, the reduced rupture force, FruptW−0.65 is a constant and seems to be a characteristic parameter of the mechanical resistance of set plaster beams.


Porosity Brittle Fracture Toughness Chemical Surface Brittle Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Röbler and I. Odler, Zement Kalk Gyps Int. 2 (1989).Google Scholar
  2. 2.
    I. Soroka and P. J. Sereda, J. Am. Ceram. Soc. 51 (1967) 6.Google Scholar
  3. 3.
    K. K. Phani and S. K. Niyogi, J. Mater. Sci. 22 (1987) 257.CrossRefGoogle Scholar
  4. 4.
    P. Coquard and R. Boistelle, Int. J. Rock. Mech. Min. Sci. 31 (1994) 517.CrossRefGoogle Scholar
  5. 5.
    P. Coquard, R. Boistelle, L. Amathieu and P. Barriac, J. Mater. Sci. 29 (1994) 4611.CrossRefGoogle Scholar
  6. 6.
    A. Carpenteri, Nota Technica 73, ISCB 1983, University of Bologna. Italy.Google Scholar
  7. 7.
    A. A. Griffith, Phil. Trans. R. Soc. A221 (1920) 163.Google Scholar
  8. 8.
    G. R. Irwin, Appl. Mater. Res. 3 (1973) 65.Google Scholar
  9. 9.
    K. Kendall, Proc. R. Soc. A261 (1978) 245.CrossRefGoogle Scholar
  10. 10.
    P. C. Paris and G. C. Sih, ASTM STP 381 (American Society for Testing and Materials, Philadelphia PA, 1965) p. 30.Google Scholar
  11. 11.
    Norme française NF A 03-180 (1981) and Norme ASTM E 399-83.Google Scholar
  12. 12.
    F. Buresch, “Fracture Mechanics of Ceramics”. Vol. 4, (Plenum Press, New York, 1978) p. 835.Google Scholar
  13. 13.
    A. Carpenteri, Eng. Fract. Mech. 16 (1982) 467.CrossRefGoogle Scholar
  14. 14.
    G. R. Irwin, Appl. Mater. Res. 3 (1964) 65.Google Scholar
  15. 15.
    J. J. Gilman, J. Appl. Phys. 31 (1960) 2208.CrossRefGoogle Scholar
  16. 16.
    A. G. Evans, J. Mater. Sci. 7 (1972) 1137.CrossRefGoogle Scholar
  17. 17.
    J. G. Williams and G. P. Marshall, Proc. R. Soc. A342 (1975) 55.CrossRefGoogle Scholar
  18. 18.
    M. Takatsu, K. Shimomura, I. Takahashi and T. Ono, Gypsum Lime 173 (1981) 15.Google Scholar
  19. 19.
    D. Maugis, J. Mater. Sci. 20 (1985) 3041.CrossRefGoogle Scholar
  20. 20.
    W. Weibull, J. Appl. Mech. 18 (1951) 293.Google Scholar
  21. 21.
    H. J. Herrmann and S. Roux, “Statistical Models for the Fracture of Disordered Media” (Amsterdam, 1990) Ch. 7.Google Scholar
  22. 22.
    L. Dé Arcangelis, A. Hansen, H. J. Herrmann and S. Roux, Phys. Rev. B 40 (1989) 877.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • P. Coquard
    • 1
  • R. Boistelle
    • 1
  1. 1.Centre de Recherche sur les Mécanismes de la Croissance CristallineCNRSMarseille cedex 09France

Personalised recommendations