Journal of Materials Science

, Volume 31, Issue 17, pp 4503–4519 | Cite as

Microstructural dependence of fracture energy and toughness of ceramics and ceramic composites versus that of their tensile strengths at 22 °C

  • R. W. Rice


The microstructural dependence of fracture energy and toughness of ceramics and ceramic particulate, platelet, and whisker composites is compared with the corresponding dependence of their tensile (flexure) strengths at 22 °C. These comparisons show that fracture energy and toughness often do not have the same porosity, or grainor particle-size dependence as strength. This is attributed to the scale of the cracks for measuring fracture energy or toughness often being too large in comparison to the cracks controlling strength. The large cracks reflect crack-microstructure interaction phenomena such as crack-wake bridging and R-curve effects that are not, or are much less, involved in the control of propagation of most strength-controlling cracks. Thus fracture mechanics must account for the scale of the cracks used in measuring fracture mechanics parameters relative to the scale of the cracks controlling the strength behaviour that is to be explained or predicted.


Polymer Porosity Tensile Strength Fracture Mechanic Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Rice, J. Mater. Sci. 31 (1996) 1969.Google Scholar
  2. 2.
    A. G. Evans, J. Am. Ceram. Soc. 73 (1990) 187.Google Scholar
  3. 3.
    F. Guiu and R. N. Stevens, J. Mater. Sci. 26 (1991) 4375.Google Scholar
  4. 4.
    R. W. Rice, J. Am. Ceram. Soc. 76 (1993) 1898.Google Scholar
  5. 5.
    K. Kendall, N. McAlford, S. R. Tan and J. D. Birchall, J. Mater. Res. 1 (1986) 120.Google Scholar
  6. 6.
    R. W. Rice, Ceram. Eng. Sci. Proc. 11 (1990) 667.Google Scholar
  7. 7.
    D. Kovar and M. J. Readey, J. Am. Ceram. Soc. 77 (1994) 1928.Google Scholar
  8. 8.
    R. W. Rice and S. W. Freiman, in “Ceramic Microstructures '76: With Emphasis on Energy Related Applications”, edited by R. M. Fulrath and J. A. Pask (Westview Press, Bolder, CO. 1977) pp. 800–23.Google Scholar
  9. 9.
    R. W. Rice, S. W. Freiman and P. F. Becher, J. Am. Ceram. Soc. 64 (1981) 345.Google Scholar
  10. 10.
    R. W. Rice, in “Fracture Mechanics Methods for Ceramics, Rocks, and Concrete”, edited by S. W. Freiman and E. R. Fuller Jr ASTM STP 745 (American Society for Testing and Materials, Philadelphia, PA, 1982) pp. 96–117.Google Scholar
  11. 11.
    Idem, Proc. Br. Ceram. Soc. 20 (1972) 205.Google Scholar
  12. 12.
    Idem, in “The Science of Ceramic Machining and Surface Finishing II”, edited by B. J. Hockey and R. W. Rice NBS Special Publication 562 (US Government Printing Office, Washington DC, 1979) pp 429–54.Google Scholar
  13. 13.
    Idem, submitted to J. Mater. Sci. Google Scholar
  14. 14.
    Idem, submitted to J. Mater. Sci. Google Scholar
  15. 15.
    Idem, submitted to J. Mater. Sci. Google Scholar
  16. 16.
    Idem, in “Treatise on Materials Science and Technology”, Vol. 11, “Properties and Microstructure”, edited by R. K. Mac Crone (Academic Press, New York, 1977). pp 191–381.Google Scholar
  17. 17.
    Idem, J. Mater. Sci. 31 (1996) 102.Google Scholar
  18. 18.
    Idem, J. Mater. Sci. 31 (1996) 1509.Google Scholar
  19. 19.
    Idem, in “Fractography of Glasses and Ceramics III”, Ceramic Trans., V64, edited by V. D. Fréchette and G. D. Quinn (American Ceramic Society, Westerville OH, 1996) p 1.Google Scholar
  20. 20.
    R. W. Rice, S. W. Freiman and J. J. Mecholsky Jr, J. Am. Ceram. Soc. 63 (1980) 129.Google Scholar
  21. 21.
    R. W. Rice, R. C. Pohanka and W. J. Mcdonough, ibid. 63 (1980) 703.Google Scholar
  22. 22.
    R. F. Cook, B. R. Lawn and C. J. Fairbanks, ibid. 68 (1985) 604.Google Scholar
  23. 23.
    P. Chantikul, S. J. Bennison and B. R. Lawn, ibid. 73 (1990) 2419.Google Scholar
  24. 24.
    K. Hayashi, Y. Tatewaki, S. Ozaki and T. Nishikawa, J. Ceram Soc. Jpn Int. Ed. 96 (1988) 516.Google Scholar
  25. 25.
    S. C. Carniglia, J. Am. Cer. Soc. 48 (1965) 580.Google Scholar
  26. 26.
    R. W. Rice, in “Fracture Mechanics of Ceramics”, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1974) pp. 323–43.Google Scholar
  27. 27.
    Idem, “Machining of Advanced Materials”, edited by S. Johanmir Nist Special Publication 847 (US Government Printing Office, Washington DC, 1993) pp. 185–204.Google Scholar
  28. 28.
    J. P. Singh, A. V. Virkar, D. K. Shetty and R. S. Gorgon, J. Am. Ceram. Soc. 62 (1979) 179.Google Scholar
  29. 29.
    A. G. Evans, ibid. 63 (1980) 115.Google Scholar
  30. 30.
    A. V. Virkar, D. K. Shetty and A. G. Evans ibid. 64 (1981) 56.Google Scholar
  31. 31.
    H. Kodama and T. Miyoshi, ibid. 73 (1990) 3081.Google Scholar
  32. 32.
    R. W. Rice, “Ceramic Transactions”, Vol. 17 “Fractography of Glasses and Ceramcis II”, edited by V. D. Frechette and J. R. Varner (American Ceramic Society, Westerville, OH, 1991) pp. 509–45.Google Scholar
  33. 33.
    J. J. Mecholsky Jr, S. W. Freiman and R. W. Rice, J. Mater. Sci. 11 (1976) 1310.Google Scholar
  34. 34.
    R. W. Steinbrech, J. Eur. Ceram. Soc. 10 (1992) 131.Google Scholar
  35. 35.
    S. Saito (ed.), “Fine Ceramics” (Elsevier, New York, 1988) p. 183.Google Scholar
  36. 36.
    R. W. Rice, K. R. McKinney, C. Cm. Wu, S. W. Freiman and W. J. McDonough, J. Mater. Sci. 20 (1985) 1392.Google Scholar
  37. 37.
    R. W. Rice, J. Am. Ceram. Soc. 77 (1994) 2232.Google Scholar
  38. 38.
    F. F. Lange, ibid. 55 (1973) 445.Google Scholar
  39. 39.
    H. Tanaka, P. Greil and G. Petzow, Int. J. High Temp. Ceram. 1 (1985) 107.Google Scholar
  40. 40.
    H. Nakamura, S. Umebayashi and K. Kishi, in J. Cer. Soc. Jpn Int. Ed. 97 (1989) 1526.Google Scholar
  41. 41.
    G. Pezzotti and T. Nishida, J. Mater. Sci. 29 (1994) 1765.Google Scholar
  42. 42.
    Y. Akimune, T. Ogasawara and N. Hirosaki, J. Ceram. Soc. Jpn Int. Ed. 100 (1992) 468.Google Scholar
  43. 43.
    G. Sasaki, H. Nakase, K. Suganuma, T. Fujita and K. Niihara, ibid. 100 (1992) 536.Google Scholar
  44. 44.
    H. Endo, M. Ueki and H. Kubo, J. Mater. Sci. 26 (1991) 3767.Google Scholar
  45. 45.
    A. Bellosi, S. Guicciardi and A. Tampieri, J. Eur. Ceram. Soc. 9 (1992) 83.Google Scholar
  46. 46.
    T. Mah, M. G. Mendiratta and H. A. Lipsitt, Am. Ceram. Soc. Bul. 60 (1981) 1229.Google Scholar
  47. 47.
    C. P. Cameron, J. H. Enloe, L. E. Dolhert and R. W. Rice, Ceram. Eng. Sci. Proc. 11 (1990) 1190.Google Scholar
  48. 48.
    H. R. Baumgartner and D. W. Richerson, in “Fracture Mechanics of Ceramics”, Vol. 1, edited by R. C. Bradt, D. P. H. Hasselman and F. Lange (Plenum Press, New York, 1974) pp. 307–86.Google Scholar
  49. 49.
    A. G. Evans, J. Mater. Sci. 9 (1974) 1145.Google Scholar
  50. 50.
    R. W. Rice, “Processing of Crystalline Ceramics”, edited by H. Palmour III, R. F. Davis, and T. M. Hare (Plenum, New York 1978) pp. 303–19.Google Scholar
  51. 51.
    W.-H. Gu, K. T. Faber and R. W. Steinbrech, Acta Metall. Mater. 40 (1992) 3121.Google Scholar
  52. 52.
    M. K. Bannister and M. V. Swain, J. Mater. Sci. 26 (1991) 6789.Google Scholar
  53. 53.
    S. V. Nair, P. Z. Q. Cai and J. E. Ritter, Ceram. Eng. Sci. Proc. 13 (1992) 81.Google Scholar
  54. 54.
    K.-H. Heussner and N. Claussen, J. Eur. Ceram. Soc. 5 (1989) 193.Google Scholar
  55. 55.
    X.-N. Huang and P. S. Nicholson, J. Amer. Cer. Soc. 76 (1993) 1294.Google Scholar
  56. 56.
    D. Baril, S. P. Tremblay and M. Fiset, J. Mater. Sci. 28 (1993) 5486.Google Scholar
  57. 57.
    Y.-S. Chou and D. J. Green, J. Am. Ceram. Soc. 76 (1993) 1452.Google Scholar
  58. 58.
    C. Nischik, M. M. Seibold, N. A. Travitzky and N. Claussen, ibid. 74 (1991) 2464.Google Scholar
  59. 59.
    M. Hanninen, R. A. Haber and D. E. Niesz, in “Ceramic Transactions”, Vol. 19, “Advanced Composite Materials”, edited by M. D. Sacs (American Ceramic Society, Westerville, OH, 1991) pp. 749–55.Google Scholar
  60. 60.
    T. Koyama, A. Nishiyama and K. Niihara, J. Mater. Sci. 29 (1994) 3949.Google Scholar
  61. 61.
    H.-D. Kim, I.-S. Lee, S.-W. Kang and J.-W. Ko, ibid. 29 (1994) 4119.Google Scholar
  62. 62.
    Y. K. Baek and C. H. Kim, ibid. 24 (1989) 1589.Google Scholar
  63. 63.
    T. D. Claar, W. B. Johnson, C. A. Anderson and G. H. Schiroky, Ceram. Eng. Sci. Proc. 10 (1989) 599.Google Scholar
  64. 64.
    T. N. Tiegs and P. F. Becher, ibid. 7 (1986) 1182.Google Scholar
  65. 65.
    P. F. Becher, C.-H. Hsueh, P. Angelini and T. N. Tiegs, J. Am. Ceram. Soc. 71 (1988) 1050.Google Scholar
  66. 66.
    P. F. Becher, H. T. Lin and K. B. Alexander, in “Science of Engineering Ceramics'91”, edited by S. Kimura and K. Niihara (Ceramic Society of Japan, 1991) pp. 307–14.Google Scholar
  67. 67.
    B. J. Wrona, J. F. Rhodes and W. M. Rogers, Ceram. Eng. Sci. Proc. 13 (1992) 653.Google Scholar
  68. 68.
    J. Rodel, E. R. Fuller Jr and B. R. Lawn J. Am. Ceram. Soc. 72 (1991) 3154.Google Scholar
  69. 69.
    P. F. Becher, E. R. Fuller Jr and P. Angelini, ibid. 74 (1991) 2131.Google Scholar
  70. 70.
    S. Iio, M. Watanabe, M. Matsubara and Y. Matsuo ibid. 72 (1989) 1880.Google Scholar
  71. 71.
    J. Homeny and L. J. Neergaard, ibid. 73 (1990) 3493.Google Scholar
  72. 72.
    R. W. Rice and D. Lewis III, in “Ceramic Fiber Composite Based Upon Refractory Polycrystalline Ceramic Matrices”, Reference Book for Composities Technology, edited by S. M. Lee (Technomic, Lancaster, PA, 1989). pp 117–42.Google Scholar
  73. 73.
    R. W. Rice, J. R. Spann, D. Lewis and W. Coblenz Ceram. Eng. Sci. Proc. 5 (1984) 614.Google Scholar
  74. 74.
    J. F. Jamet, D. Lewis and E. Y. Luh, ibid. 5 (1984) 625.Google Scholar
  75. 75.
    S. J. Bennison and B. R. Lawn, Acta. Metall. 37 (1989) 2059.Google Scholar
  76. 76.
    D. K. Shetty and Jr-S. Wang, J. Am. Ceram. Soc. 72 (1989) 1158.Google Scholar
  77. 77.
    Y. Hamano, M. Yamaguchi and S. Nagano, in “Ceramics for High Performance Applications, III Reliability”, edited by E. M. Lenoe, R. N. Katz and J. J. Burke (Plenum Press, New York, 1983) pp. 251–66.Google Scholar
  78. 78.
    E. M. Lenoe, “, pp. 3–18.Google Scholar
  79. 79.
    E. A. Fisher and W. Trela, “, pp. 623–43.Google Scholar
  80. 80.
    J. Sung and P. S. Nicholson, J. Am. Ceram. Soc. 71 (1988) 788.Google Scholar
  81. 81.
    K. Tsukuma and M. Shimada, Am. Ceram. Soc. Bull. 64 (1985) 310.Google Scholar
  82. 82.
    M. A. Janney, ibid. 66 (1987) 322.Google Scholar
  83. 83.
    W. Stadlbauer, W. Kladnig and G. Gritzner, J. Mater. Sci. Lett. 8 (1989) 1217.Google Scholar
  84. 84.
    M. Watanabe and I. Fukuura, “The strength of Al2O3 and Al2O3-TiC Ceramics in Relation to Their Fracture Sources”, Ceramic Science and Technology at the Present and in the Future, Japan, (1981) pp. 193–201.Google Scholar
  85. 85.
    E. D. Whitney, Am. Ceram. Soc. Bull. 67 (1988) 1010.Google Scholar
  86. 86.
    R. K. Govila, J. Mater. Sci. 23 (1988) 3782.Google Scholar
  87. 87.
    L. Bjork and L. A. G. Hermannson, J. Am. Ceram. Soc. 72 (1989) 1436.Google Scholar
  88. 88.
    C. -W. Li and J. Yamanis, Ceram. Eng. Sci. Proc. 10 (1989) 632.Google Scholar
  89. 89.
    J. A. Salem, S. R. Choi, M. R. Freedman and M. G. Jenkins, J. Mater. Sci. 27 (1992) 4421.Google Scholar
  90. 90.
    N. Hirosaki, Y. Akimune and M. Mitomo, J. Am. Ceram. Soc. 76 (1993) 1892.Google Scholar
  91. 91.
    J. Neil, “Calculating Weibull Modules from Average and Standard Deviation”, GTE Laboratory Report, 7/1989.Google Scholar
  92. 92.
    G. Himsolt and H. Knoch, J. Am. Ceram. Soc. 62 (1979) 29.Google Scholar
  93. 93.
    D. R. Biswas and R. M. Fulrath, Trans. J. Br. Ceram. Soc. 79 (1980) 1.Google Scholar
  94. 94.
    R. W. Rice, J. Mater. Sci. 19 (1984) 895.Google Scholar
  95. 95.
    A. A. Steffen, R. H. Dauskardt and R. O. Ritchie, J. Am. Ceram. Soc. 74 (1991) 1259.Google Scholar
  96. 96.
    R. H. Dauskardt, M. R. James, J. R. Porter and R. O. Ritchie, ibid. 75 (1992) 759.Google Scholar
  97. 97.
    R. W. Rice, ibid. 77 (1994) 2479.Google Scholar
  98. 98.
    D. E. Whittmer and W. Trimble, Eng. Sci. Proc. 10 (1989) 1223.Google Scholar
  99. 99.
    M. V. Swain and L. R. F. Rose, J. Am. Ceram. Soc. 69 (1986) 511.Google Scholar
  100. 100.
    R. W. Rice, in “Advances in Ceramics”, Vol. 22, “Fractography of Glasses and Ceramics”, edited by J. R. Varner and V. D. Frechette(American Ceramic Society, Westerville, OH 1988) pp. 3–56.Google Scholar
  101. 101.
    K. R. McKinney, B. A. Bender, R. W. Rice, and C. Cm. Wu, J. Mater. Sci. 26 (1991) 6467.Google Scholar
  102. 102.
    K. W. White and J. C. Hay, J. Am. Ceram. Soc. 77 (1994) 2283.Google Scholar
  103. 103.
    R. W. Rice, ibid. 76 (1993) 3009.Google Scholar
  104. 104.
    N. B. Eden and J. E. Bailey, J. Mater. Sci, 19 (1984) 150.Google Scholar
  105. 105.
    S. Igarashi and M. Kawamura, J. Am. Ceram. Soc. 78 (7) (1995) 1715.Google Scholar
  106. 106.
    P. C. Strange and A. H. Bryant, J. Mater. Sci, 14 (1979) 1863.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • R. W. Rice
    • 1
  1. 1.AlexandriaUSA

Personalised recommendations