Rheologica Acta

, Volume 33, Issue 6, pp 506–516 | Cite as

Assessment of nonlinear strain measures for extensional and shearing flows of polymer melts

  • M. H. Wagner
  • J. Schaeffer
Article

Abstract

From stress-strain experiments in extensional and shearing flows, nonlinear strain measures and effective damping functions are derived for a polyisobutylene melt. The strain measures determined in planar extensional flow and in simple shear flow coincide. Experimental results are compared with predictions of two molecular theories, the Doi-Edwards model and the molecular stress function approach of Wagner and Schaeffer. Discrepancies between theories and experiment lead to a reconsideration of the classification of extensional flows. The symmetry of the flow field is identified and quantified as an important parameter influencing the strain measure, and a unifying strain measure for general extensional and shearing flows of polymer melts is presented.

Key words

Strain measure damping function extensional flow transversely isotropic flow planar flow shear flow Doi-Edwards model molecular stress function classification of extensional flows planarity index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brod H, Buggisch H (1992) Ein Rheometer zur Untersuchung von flüssigen Polymermaterialien in einachsiger and zweiachsiger Dehnung. Rheol Acta 31:283 – 293Google Scholar
  2. Demarmels A (1983) Das rheologische Verhalten von Polyisobutylen bei mehrachsigen Dehnstromungen und seine Beschreibung in den Netzwerktheorien. Dissertation ETH Zürich Nr 7345Google Scholar
  3. Demarmels A, Meissner J (1986) Multiaxial elongations of polyisobutylene and the predictions of several network theories. Colloid Polym Sci 264:829 – 846Google Scholar
  4. Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Faraday Trans II, 74:1818 – 1832Google Scholar
  5. Geiger K (1986) Bogenspalt-Kapillarrheometer zur Ermittlung viskoser and elastischer Eigenschaften von Kunststoffschmelzen. Dissertation Universität StuttgartGoogle Scholar
  6. Hoppler HU (1990) Die Beschreibung der dehnungsinduzierten Doppelbrechung von geschmolzenem Polystyrol mit einem kinetischen Orientierungs-Modell. Dissertation ETH Zürich Nr 9099Google Scholar
  7. Khan SA, Larson RG (1991) Step planar extension of polymer melts using a lubricated channel. Rheol Acta 30:1–6Google Scholar
  8. Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworths, LondonGoogle Scholar
  9. Laun HM (1978) Description of the non-linear shear behaviour of a low density polyethylene melt by means of an experimentally determined strain dependent memory function. Rheol Acta 17:1–15Google Scholar
  10. Laun HM (1980) Stresses and recoverable strains of stretched polymer melts and their prediction by means of a single integral constitutive equation. Proc VIIth Int Congress Rheology, Naples p 419–424Google Scholar
  11. Laun HM, Schuch H (1989) Transient elongational viscosities and drawability of polymer melts. J Rheol 33:119–175Google Scholar
  12. Lodge AS (1964) “Elastic liquids”. Academic Press, London New YorkGoogle Scholar
  13. Meissner J (1972) Modifications of the Weissenberg rheogoniometer for measurement of transient rheological properties of molten polyethylene under shear. Comparison with tensile data. J Appl Polym Sci 16:2877–2899Google Scholar
  14. Samurkas T, Larson RG, Dealy JM (1989) Strong extensional and shearing flow of a branched polyethylene. J Rheol 33:559–578Google Scholar
  15. Schaeffer J, Wagner MH (1993) Nonlinear strain measures for extensional and shearing flows of polymer melts. ASME Winter Annual Meeting, developments in nonNewtonian flows. AMD-Vol 175:27 – 34Google Scholar
  16. Schaeffer J (1994) Entwicklung einer rheologischen Zustandsgleichung für biaxiale Dehnungen und Scherung von Polymerschmelzen. Dissertation Universität of StuttgartGoogle Scholar
  17. Soskey P, Winter H (1984) Large step shear strain experiments with parallel-disk rotational rheometers. J Rheol 28:625 – 645Google Scholar
  18. Stephenson S (1980) Biaxial elongational flow of polymer melts and its realization in a newly developed rheometer. Dissertation ETH Zürich No 6664Google Scholar
  19. Stevenson JF, Chung SC-K, Jenkins JT (1975) Evaluation of material functions for steady elongational flow. Trans Soc Rheol 19:397–405Google Scholar
  20. Wagner MH (1976) Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt. Rheol Acta 17:136–142Google Scholar
  21. Wagner MH (1978) A constitutive analysis of uniaxial elongational flow data of low-density polyethylene melt. J Non-Newtonian Fluid Mech 4:39 – 55Google Scholar
  22. Wagner MH, Laun HM (1978) Nonlinear shear creep and constrained elastic recovery of a LDPE melt. Rheol Acta 17:138–148Google Scholar
  23. Wagner MH (1979) Zur Netzwerktheorie von Polymer-Schmelzen. Rheol Acta 18:33 – 50Google Scholar
  24. Wagner MH (1990) The nonlinear strain measure of polyisobutylene melt in general biaxial flow and its comparison to the Doi-Edwards model. Rheol Acta 29:594 – 603Google Scholar
  25. Wagner MH, Demarmels A (1990) A constitutive analysis of extensional flows of polyisobutylene. J Rheol 34:943 – 958Google Scholar
  26. Wagner MH, Schaeffer J (1992) Nonlinear strain measures for general biaxial extension of polymer melts. J Rheol 36:1–26Google Scholar
  27. Wagner MH, Schaeffer J (1993) Rubbers and polymer melts: universal aspects of nonlinear stress-strain relations. J Rheol 37:643–661Google Scholar

Copyright information

© Steinkopff-Verlag 1994

Authors and Affiliations

  • M. H. Wagner
    • 1
  • J. Schaeffer
    • 1
  1. 1.Institut für KunststofftechnologieUniversität StuttgartStuttgartGermany

Personalised recommendations