Human Genetics

, Volume 79, Issue 3, pp 289–290

Linkage between the variegate porphyria (VP) and the alpha-1-antitrypsin (PI) genes on human chromosome 14

  • S. Bissbort
  • H. W. Hitzeroth
  • D. P. du Wentzel
  • C. W. Van den Berg
  • H. Senff
  • T. F. Wienker
  • K. Bender
Short Communications

Summary

From family studies close linkage between the gene locus for variegate porphyria (VP) and the alpha-1-antitrypsin (PI) gene became evident. The maximal lod score from male meioses was 4.33 at \(\hat \theta \)=0.04 and from both sexes combined 3.56 at \(\hat \theta \)=0.12. Three pedigrees were triple informative regarding loci VP, PI, and IGHC (immunoglobulin heavy chain cluster, Gm polymorphism). In two of the respective meioses recombinations were observed, and in both cases the co-segregating VP and PI alleles were separated from the Gm haplotypes. These findings argue in favour of gene order either VP:PI:IGHC or PI:VP:IGHC.

References

  1. Brenner DA, Bloomer JR (1980) The enzymatic defect in variegate porphyria: studies with human cultured skin fibrolasts. N Engl J Med 302:765–769Google Scholar
  2. Cox DW, Marcovic VD, Tesluma IE (1982) Genes for immunoglobulin heavy chains and for α-1-antitrypsin are localized to specific regions of chromosome 14q. Nature 297:429–430Google Scholar
  3. Dean G (1972) The porphyrias. A story of inheritance and environment, 2nd edn. Lippincott, PhiladelphiaGoogle Scholar
  4. Diamond JM, Rotter JI (1987) Observing the founder effect in human evolution. Nature 329:105–106Google Scholar
  5. Flanagan JG, Rabbitts TH (1982) Arrangements of human immunoglobulin heavy chain constant region genes implies evolutionary duplication of a segment containing γ, ε and α genes. Nature 300:709–713Google Scholar
  6. Gedde-Dahl T, Fagerhol MK, Cook PJL, Noades J (1972) Autosomal linkage between the Gm and Pi loci in man. Ann Hum Genet 35:393–399Google Scholar
  7. Lefranc M-P, Lefranc G, Rabbitts TH (1982) Inherited deletion of immunoglobulin heavy chain constant region genes in normal human individuals. Nature 300:760–762Google Scholar
  8. Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7:277–318Google Scholar
  9. Ott J (1974) Estimation of the recombination fraction in human pedigrees. Efficient computation of the likelihood for linkage studies. Am J Hum Genet 26:588–597Google Scholar
  10. Ropers HH, Gedde-Dahl T, Cox DW (1987) Report of the committee on the genetic constitution of chromosomes 13, 14, 15 and 16. (9th International Workshop on Human Gene Mapping) Cytogenet Cell Genet (in press)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • S. Bissbort
    • 1
  • H. W. Hitzeroth
    • 2
  • D. P. du Wentzel
    • 1
  • C. W. Van den Berg
    • 1
  • H. Senff
    • 3
  • T. F. Wienker
    • 3
  • K. Bender
    • 3
  1. 1.Department of Chemical PathologyMedical Faculty of PretoriaPretoriaRepublic of South Africa
  2. 2.Department of National Health and Population DevelopmentGenetic ServicesPretoriaRepublic of South Africa
  3. 3.Institut für Humangenetik und Anthropologie der UniversitätFreiburg i. Br.Germany

Personalised recommendations