Mammalian Genome

, Volume 4, Issue 9, pp 499–503 | Cite as

The gene coding for the α1 subunit of the skeletal dihydropyridine receptor (Cchl1a3=mdg) maps to mouse Chromosome 1 and human 1q32

  • Béatrice Drouet
  • Luis Garcia
  • Dominique Simon-Chazottes
  • Marie Geneviève Mattei
  • Jean-Louis Guénet
  • Arnold Schwartz
  • Gyula Varadi
  • Martine Pinçon-Raymond
Original Contributions

Abstract

Using both chromosomal in situ hybridization and molecular techniques, we report the genetic localization of the gene coding for the alpha 1 subunit of the skeletal slow Ca2+ current channel/DHP receptor gene (Cchl1a3) on human Chromosome (Chr) 1 (1q31–1q32 region) and on mouse Chr 1 region (F-G). On the basis of single-strand conformation polymorphism (SSCP-PCR) analysis in an interspecific backcross, we have determined that the Cchl1a3=mdg (muscular dysgenesis) locus is very closely linked to the myogenin (Myog) locus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beam, K.G., Knusdon, C.M., Powell, J.A. (1986). A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 320, 168–170.Google Scholar
  2. Bonhomme, F., Guénet, J.-L. (1989). The wild house mouse and its relatives. In Genetic Variants and Strains of the Laboratory Mouse, 2nd ed., M.F. Lyon, A.G. Searle, eds. (New York: Oxford Univ. Press), pp. 649–662.Google Scholar
  3. Borsotto, M., Barhanin, J., Fosset, M., Lazdunski, M. (1985). The 1–4 dihydropyridine receptor associated with the skeletal muscle voltage dependent calcium channel: purification and subunit composition. J. Biol. Chem. 260, 14255–14263.Google Scholar
  4. Bowden-Essien, F. (1972). An in vitro study of normal and mutant myogenesis in the mouse. Dev. Biol. 27, 351–364.Google Scholar
  5. Catteral, W.A. (1991). Functional subunit structure of voltage-gated calcium channels. Science 253, 1499–1500.Google Scholar
  6. Catterall, W.A., Seager, M.J., Takahashi, M. (1988). Molecular properties of dihydropyridine-sensitive calcium channels in skeletal muscle. J. Biol. Chem. 263, 3535–3538.Google Scholar
  7. Chaudhari, N. (1992). A single nucleotide deletion in the skeletal muscle-specific calcium channel transcript of muscular dysgenesis (mdg) mice. J. Biol. Chem. 267, 25636–25639.Google Scholar
  8. Chin, H., Krall, M., Kim, H.L., Kozak, C.A., Mock, B. (1992). The gene for the α1 subunit of the skeletal muscle dihydropyridine-sensitive calcium channel (Cchl1a3) maps to mouse chromosome 1. Genomics 14, 1089–1091.Google Scholar
  9. Ellis, S. B., Williams, M.E., Ways, N.R., Brenner, R., Sharp, A.H., Leung, A.T., Campbell, K.P., McKenna, E., Koch, W.J., Hui, A., Schwartz, A., Harpold, M.M. (1988). Sequence and expression of mRNAs encoding the α1 and α2 subunits of a DHP sensitive calcium channel. Science 241, 19661–19664.Google Scholar
  10. Gluecksohn-Waelsch, S. (1963). Lethal genes analysis of differentiation. Science 142, 1269–1273.Google Scholar
  11. Hata, A., Robertson, M., Emi, M., Lalouel, J.M. (1990). Direct detection and automated sequencing of individual alleles after electrophoretic strand separation: identification of a common nonsense mutation in exon 9 of the human lipoprotein lipase gene. Nucleic Acids Res. 18, 5407–5411.Google Scholar
  12. Hearne, C., McAleer, M., Love, J., Aitman, T., Cornall, R., Ghosh, S., Knight, A., Prins, J.B., Todd, J. (1991). Additional microsatellites markers for mouse genome mapping. Mammalian Genome 1, 273–282.Google Scholar
  13. Knudson, C.M., Chaudhari, N., Sharp, A.H., Powell, J.A., Beam, K.G., Campbell, K.P. (1989). Specific absence of the α1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J. Biol. Chem. 264, 1345–1348.Google Scholar
  14. Koide, T., Ishiura, M., Hazumi, N., Shiroishi, T., Okada, Y., Uchida, T. (1990). Amplification of a long sequence that includes a processed pseudogene for elongation factor 2 in the mouse. Genomics 6, 80–88.Google Scholar
  15. Love, J., Knight, A., McAleer, M., Todd, J. (1990). Towards construction of a high resolution map of the mouse genome using PCR analysed microsatellites. Nucleic Acids Res. 18, 4123–4130.Google Scholar
  16. Mattei, M.G., Philip, N., Passage, E., Moissan, J.P., Mandel, J.L., Mattei, J.F. (1985). DNA probe localization at 18p113 band by in situ hybridization and identification of a small supernumerary chromosome. Hum. Genet. 69, 268–271.Google Scholar
  17. Montagutelli, X., Serikawa, T., Guénet, J.-L. (1991). PCR-analysed microsatellites: data concerning laboratory and wild-derived mouse inbred stains. Mammalian Genome 1, 255–259.Google Scholar
  18. Murray, J.C., Nishimusa, D.Y., Buetow, K.H., Ardinger, N.H., Spence, M.A., Sparkes, R.S., Falk, R.E., Falk, P.M., Gardner, J.M., Harkness, E.M., Glinski, L.P., Pauli, R.M., Nakamura, Y., Green, P.P., Schinzel, A. (1990). Linkage of an autosomal dominant clefting syndrome (Van der Woude) to loci on chromosome 1q. Am. J. Hum. Genet. 46, 486–491.Google Scholar
  19. Olson, E., Edmondson, D., Wright, W.E., Li, V.K., Guénet, J.-L., Simon-Chazottes, D., Thompson, L.H., Stallings, R.L., Schroeder, W.T., Duvic, M., Brock, D., Helin, D., Siciliano, M.J. (1990). Myogenin is in an evolutionarily conserved linkage group on human chromosome 1q31–q41 and unlinked to other mapped muscle regulatory factory genes. Genomics 8, 427–434.Google Scholar
  20. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., Sekiva, T. (1989a). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770.Google Scholar
  21. Orita, M., Suzuki, Y., Sekiva, T., Hayashi, K. (1989b). Rapid and sensitive detection of point mutation and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879.Google Scholar
  22. Paï, A.C. (1965). Developmental genetics of a lethal mutation muscular dysgenesis (mdg) in the mouse. I. Genetic analysis and gross morphology. Dev. Biol. 11, 82–92.Google Scholar
  23. Pinçon-Raymond, M., Rieger, F., Fosset, M., Lazdunski, M. (1985). Abnormal transverse tubule and abnormal amount of the receptors for Ca2+ channel inhibitors of the dihydropyridine family in the skeletal muscle from mice with embryonic muscular dysgenesis. Dev. Biol. 112, 458–466.Google Scholar
  24. Purmann, L., Plass, C., Gruneberg, M., Winking, H., Traut, W. (1992). A long-range repeat cluster in chromosome 1 of the house mouse, Mus musculus, and its relation to a germline homogeneously staining region. Genomics 12, 80–88.Google Scholar
  25. Rieger, F., Bournaud, R., Shimara, T., Garcia, L., Pinçon-Raymond, M., Romey, G., Lazdunski, M. (1987). Restoration of dysgenic muscle contraction and calcium channel function by coculture with normal spinal cord neurons. Nature 330, 563–566.Google Scholar
  26. Rios, E., Pizarro, G. (1988). Voltage sensors and calcium channels of excitation-contraction coupling. News Physiol. Sci. 3, 223–227.Google Scholar
  27. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.Google Scholar
  28. Seldin, M.F. (1992). Mouse Chromosome 1. Mammalian Genome 3, Suppl., S1-S19.Google Scholar
  29. Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., Numa, S. (1987). Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 28, 313–318.Google Scholar
  30. Tanabe, T., Beam, K., Powell, J., Numa, S. (1988). Restoration of the excitation-contraction coupling and slow calcium curuent in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336, 313–318.Google Scholar
  31. Van der Woude, X. (1954). Fistula labii inferioris congenita and its association with cleft lip and palate. Am. J. Hum. Genet. 6, 244.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • Béatrice Drouet
    • 1
  • Luis Garcia
    • 1
  • Dominique Simon-Chazottes
    • 2
  • Marie Geneviève Mattei
    • 4
  • Jean-Louis Guénet
    • 2
  • Arnold Schwartz
    • 3
  • Gyula Varadi
    • 3
  • Martine Pinçon-Raymond
    • 1
  1. 1.Groupe de Biologie, Développement et Régénération du Système NeuromusculaireINSERM U. 153 et UA 614 CNRSParisFrance
  2. 2.Unité de Génétique des Mammifères, URA 361Institut PasteurParis, Cedex 15France
  3. 3.Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati Medical CenterCincinnatiUSA
  4. 4.Centre de Génétique Médicale, INSERM U. 242Hopital d'enfants de la TimoneMarseille, CedexFrance

Personalised recommendations