Roux's archives of developmental biology

, Volume 202, Issue 1, pp 36–48

Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda) : germ band formation, segmentation, and early neurogenesis

  • Gerhard Scholtz
Original articles
  • 131 Downloads

Summary

The cell division pattern of the germ band of Cherax destructor is described from gastrulation to segmentation, limb bud formation, and early neurogenesis. The naupliar segments are formed almost simultaneously from scattered ectoderm cells arranged in a V-shaped germ disc, anterior to the blastopore. No specific cell division pattern is recognisable. The post-naupliar segments are formed successively from front to rear. Most post-naupliar material is budded by a ring of about 39 to 46 ectoteloblasts, which are differentiated successively and in situ in front of the telson ectoderm. The ectoteloblasts give rise to 15 descendant cell rows by unequal divisions in an anterior direction, following a mediolateral mitotic wave. Scattered blastoderm cells of non-ectoteloblastic origin in front of the ectoteloblast descendants and behind the mandibular region are also arranged in rows. Despite their different origins, teloblastic and non-teloblastic rows cleave twice by mediolateral mitotic waves to form 4 regular descendant rows each. Thereafter, the resulting grid-like pattern is dissolved by stereotyped differential cleavages. Neuroblasts are formed during these differential cleavages and segmentation becomes visible. Each ectoderm row represents a parasegmental unit. Therefore, the segmental boundary lies within the area covered by the descendants of 1 row. Segmental structures (limbs, ganglia) are composed of derivatives of 2 ectoderm rows. The results are compared with the early development of other crustaceans and insects in relation to mechanisms of germ band formation, segmentation, neurogenesis, and evolution.

Key words

Cell lineage Segmentation Neuroblasts Crayfish Crustacea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambros V (1988) Genetic basis for heterochronic variation. In: McKinney ML (ed) Heterochrony in evolution. Plenum Press, New York, 269–285Google Scholar
  2. Bate CM (1976) Embryogenesis of an insect nervous system: I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. J Embryol Exp Morphol 35:107–123Google Scholar
  3. Benesch R (1969) Zur Ontogenie und Morphologie von Artemia salina L. Zool Jb Anat 86:307–458Google Scholar
  4. Celada JD, Carral JM, Gonzalez J (1991) A study on the identification and chronology of the embryonic stages of the freshwater crayfish Austropotamobius pallipes (Lereboullet, 1858). Crustaceana 61:225–232Google Scholar
  5. Doe CQ, Goodman CS (1985a) Early events in insect neurogenesis I. Development and segmental differences in the pattern of neuronal precursor cells. Dev Biol 111:193–205Google Scholar
  6. Doe CQ, Goodman CS (1985b) Early events in insect neurogenesis: II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Dev Biol 111:206–219Google Scholar
  7. Dohle W (1964) Die Embryonalentwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zool Jb Anat 81:241–310Google Scholar
  8. Dohle W (1970) Die Bildung und Differenzierung des postnauplialen Keimstreifs von Diastylis rathkei (Crustacea, Cumacea): 1. Die Bildung der Teloblasten und ihrer Derivate. Z Morphol Tiere 67:307–392Google Scholar
  9. Dohle W (1972) Über die Bildung und Differenzierung des postnauplialen Keimstreifs von Leptochelia spec. (Crustacea, Tanaidacea). Zool Jb Anat 89:503–566Google Scholar
  10. Dohle W (1976a) Die Bildung und Differenzierung des postnauplialen Keimstreifs von Diastylis rathkei (Crustacea, Cumacea): II. Die Differenzierung and Musterbildung des Ektoderms. Zoomorphologie 84:235–277Google Scholar
  11. Dohle W (1976b) Zur Frage des Nachweises von Homologien durch die komplexen Zell- und Teilungsmuster in der embryonalen Entwicklung höherer Krebse (Crustacea, Malacostraca, Peracarida). Sitzber Ges Naturforsch Freunde Berlin (N.F.) 16/2: 125–144Google Scholar
  12. Dohle W (1989) Zur Frage der Homologie ontogenetischer Muster. Zool Beitr (N.F.) 32:355–389Google Scholar
  13. Dohle W, Scholtz G (1988) Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development 104 (Suppl):147–160Google Scholar
  14. Fioroni P (1969) Zum embryonalen und postembryonalen Dotterabbau des Flußkrebses (Astacus; Crustacea malacostraca, Decapoda). Rev Suisse Zool 76:919–946Google Scholar
  15. Freeman JA (1989) Segment morphogenesis in Artemia larvae. In: Warner AH, MacRae TH, Bagshaw JC (eds) Cell and molecular biology of Artemia development. Plenum Press, New York, pp 77–90Google Scholar
  16. Fulinski B (1908) Beiträge zur embryonalen Entwicklung des Fluß-krebses. Zool Anz 33:20–28Google Scholar
  17. Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, CambridgeGoogle Scholar
  18. Grobben (1879) Die Entwicklungsgeschichte der Moina rectirostris. Arb Zool Inst Wien 2:203–268Google Scholar
  19. Hahnenkamp L (1974) Die Bildung und Differenzierung des Keimstreifens der Asseln (Isopoda) and anderer höherer Krebse. Eine vergleichend-embryologische Studie. Zulassungsarbeit für die I. (wissenschaftliche) Staatsprüfung, Abschnitt 11:1–179Google Scholar
  20. Hartenstein V, Rudloff E, Campos-Ortega JA (1987) The pattern of proliferation of the neuroblasts in the wild-type embryo of Drosophila melanogaster. Roux's Arch Dev Biol 196:473–485Google Scholar
  21. Henry JJ, Raff RA (1990) Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma. Dev Biol 141:55–69Google Scholar
  22. Heymons R (1901) Die Entwicklungsgeschichte der Scolopender. Zoologica 13:1–244Google Scholar
  23. Krause G (1939) Die Eitypen der Insekten. Biol Zentralbl 59:495–536Google Scholar
  24. Krause G (1987) Evolutionary shifts indicated by the time pattern of embryogenetic events in Pimpla (Hymenoptera) as compared with Tachycines (Orthoptera). Zool Jb Anat 116:453–472Google Scholar
  25. Malzacher P (1968) Die Embryogenese des Gehirns paurometaboler Insekten. Untersuchungen an Carausius morosus und Periplaneta americana. Z Morphol Tiere 62:103–161Google Scholar
  26. Mee J, French V (1986) Disruption of segmentation in a short germ insect embryo: 11. The structure of segmental abnormalities induced by heat shock. J Embryol Exp Morphol 96:267–294Google Scholar
  27. Meinhardt H (1982) Models of biological pattern formation. Academic Press, LondonGoogle Scholar
  28. Moritz M (1957) Zur Embryonalentwicklung der Phalangiiden (Opiliones, Palpatores) unter besonderer Berücksichtigung der äußeren Morphologie, der Bildung des Mitteldarmes und der Genitalanlage. Zool Jb Anat 76:331–370Google Scholar
  29. Oishi S (1959) Studies on the teloblasts in the decapod embryo: I. Origin of teloblasts in Heptacarpus rectirostris STIMPSON. Embryologia 4:283–309Google Scholar
  30. Oishi S (1960) Studies on the teloblasts in the decapod embryo: II. Origin of teloblasts in Pagurus samuelis STIMPSON and Hemigrapsus sanguineus DE HAAN. Embryologia 5:270–282Google Scholar
  31. Patel NH, Kornberg TB, Goodman CS (1989) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212Google Scholar
  32. Reichenbach H (1888) Zur Embryonalentwicklung des Fluß-krebses. Abh Senckenberg Ges Nat Forsch 14:1–137Google Scholar
  33. Sandeman R, Sandeman D (1991) Stages in the development of the embryo of the fresh-water crayfish Cherax destructor. Roux's Arch Dev Biol 200:27–37Google Scholar
  34. Sander K (1983) The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin BC, Holder N, Wylie CG (eds) Development and evolution. Cambridge University Press, pp 137–159Google Scholar
  35. Scholtz G (1984) Untersuchungen zur Bildung und Differenzierung des postnauplialen Keimstreifs von Neomysis integer LEACH (Crustacea, Malacostraca, Peracarida). Zool Jb Anat 112:295–349Google Scholar
  36. Scholtz G (1986) Die Bildung des Keimstreifs der Amphipoda (Peracarida) — cin abgewandelter Modus innerhalb der Malacostraca (Crustacea). Verh Dtsch Zool Ges 79:190Google Scholar
  37. Scholtz G (1990) The formation, differentiation and segmentation of the post-naupliar germ band of the amphipod Gammarus pulex L. (Crustacea, Malacostraca, Peracarida). Proc R Soc Lond B 239:163–211Google Scholar
  38. Shiino SM (1950) Studies on the embryonic development of Panulirus japonicus (Von Siebold). J Fac Fish Pref Univ Mie-Tsu 1:1–168Google Scholar
  39. Sieg J (1984) Neuere Erkenntnisse zum natürlichen System der Tanaidacea. Eine phylogenetische Studie. Zoologica 46:1–132Google Scholar
  40. Sommer R, Tautz D (1991) Asynchronous mitotic domains during blastoderm formation in Musca domestica L. (Diptera). Roux's Arch Dev Biol 199:373–376Google Scholar
  41. Tamarelle M, Haget A, Ressouches A (1985) Segregation, division, and early patterning of lateral thoracic neuroblasts in the embryos of Carausius morosus Br. (Phasmida: Lonchodidae). Int J Insect Morphol Embryol 14:307–317Google Scholar
  42. Tear G, Bate CM, Martinez Arias A (1988) A phylogenetic interpretation of the patterns of gene expression in Drosophila embryos. Development 104 (Suppl):135–145Google Scholar
  43. Technau GM, Becker T, Campos-Ortega JA (1988) Reversible commitment of neural and epidermal progenitor cells during embryogenesis of Drosophila melanogaster. Roux's Arch Dev Biol 197:413–418Google Scholar
  44. Thomas JB, Bastiani MJ, Bate M, Goodman CS (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature 310:203–207Google Scholar
  45. Tiegs OW (1940) The embryology and affinities of the Symphyla, based on a study of Hanseniella agilis. Q J Micr Sci 82:1–225Google Scholar
  46. Weygoldt P (1960) Embryologische Untersuchungen an Ostrakoden: Die Entwicklung von Cyprideis litoralis (G.S. Brady) (Ostracoda, Podocopa, Cytheridae). Zool Jb Anat 78:369–426Google Scholar
  47. Whitington PM, Meier T, King P (1991) Segmentation, neurogenesis and formation of early axonal pathways in the centipede Ethmostigmus rubripes (Brandt). Roux's Arch Dev Biol 199:349–363Google Scholar
  48. Wray GA, Raff RA (1990) Novel origins of lineage founder cells in the direct developing sea urchin Heliocidaris erythrogramma. Dev Biol 141:41–54Google Scholar
  49. Zehnder H (1934) Uber die Embryonalentwicklung des Fluß-krebses. Acta Zoologica 15:261–408Google Scholar
  50. Zilch R (1974) Die Embryonalentwicklung von Thermosbaena mirabilis MONOD. (Crustacea, Malacostraca, Pancarida). Zool Jb Anat 93:462–576Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Gerhard Scholtz
    • 1
  1. 1.School of Biological ScienceUniversity of New South WalesAustralia
  2. 2.Institut fur ZoologieFreie Universität BerlinBerlin 33Federal Republic of Germany

Personalised recommendations