Accumulation of organelles at the ends of interrupted axons

  • Jiřina Zelená
  • Liliana Lubińska
  • E. Gutmann
Article

Summary

Proximal and distal stumps of the sciatic nerve of rats were examined with the light and electron microscope in the course of 48 hours following nerve crush. On both sides of the lesion organelles accumulate in axons beyond regions disorganized by injury. A stretch of clear axoplasm filled with fine granules usually separates the cone of accumulating particles from the damaged part of the fibre. From two hours onwards closely packed vesicles, tubules, mitochondria and other organelles form dense pellets which fill up the whole lumen of the fibre. Further away from the fibre tip organelles are stranded at the circumference only, whereas the central core is occupied by neurofilaments. In a number of fibres no pellets are observed and only a moderately increased network of axoplasmic reticulum is seen at the fibre ends.

Measurements on isolated fibres have shown that the length of the pellet increases with time on both sides of the lesion up to 18 hours after crush; thereafter the elongation is arrested in the distal stump, while in the proximal stump it continues further at a slower rate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andres, K. H.: Elektronenmikroskopische Untersuchungen über Strukturveränderungen an den Nervenfasern in Rattenspinalganglien nach Bestrahlung mit 185 MEV-Protonen. Z. Zellforsch. 61, 1–22 (1963).Google Scholar
  2. Breemen, van V. L., E. Anderson, and J. F. Reger: An attempt to determine the origin of synaptic vesicles. Exp. Cell Res., Suppl. 5, 153–167 (1958).Google Scholar
  3. Calugareanu, D.: Contribution à l'étude de la compression des nerfs. J. Physiol. Pathol. gén. 3, 393–404 (1901).Google Scholar
  4. -: Recherches sur les modifications histologiques dans les nerfs comprimés. J. Physiol. Pathol. gén. 3, 413–423 (1901).Google Scholar
  5. Causey, G., and E. Palmer: Early changes in degenerating mammalian nerves. Proc. roy. Soc. B 139, 597–609 (1952).Google Scholar
  6. Dahlström, A.: Observation on the accumulation of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after compression. J. Anat. (Lond.) 99, 677–687 (1965).Google Scholar
  7. -: The transport of noradrenaline between two simultaneously performed ligations of the sciatic nerves of rat and cat. Acta physiol. scand. 69, 158–166 (1967).Google Scholar
  8. David, H., E. Winkelmann u. I. Marx: Elektronenmikroskopische Untersuchungen degenerativer und regenerativer Vorgänge am durchtrennten Rückenmark von Amblystoma mexicanum. J. Hirnforsch. 6, 235–255 (1963).Google Scholar
  9. Estable, C., W. Acosta-Ferreira, and J. R. Sotelo: An electron microscope study of the regenerating nerve fibres. Z. Zellforsch. 46, 387–399 (1957).Google Scholar
  10. Friede, R.: Electrophoretic production of “reactive” axon swellings in vitro and their histochemical properties. Acta neuropath. (Berl.) 3, 217–228 (1964).Google Scholar
  11. Gray, E. G., and R. W. Guillery: Synaptic morphology in the normal and degenerating nervous system. Int. Rev. Cytol. 19, 111–182 (1966).Google Scholar
  12. Haftek, J., and P. K. Thomas: Electron microscope observations on the effects of localized crush injuries on the connective tissues of peripheral nerve. J. Anat. (Lond.) 102, 154–156 (1967).Google Scholar
  13. Hay, E. D.: The fine structure of nerves in the epidermis of regenerating salamander limbs. Exp. Cell Res. 19, 299–317 (1960).Google Scholar
  14. Hebb, C. O., and A. Silver: Gradient of choline acetylase activity. Nature (Lond.) 189, 123–125 (1961).Google Scholar
  15. Holtzman, E., and A. B. Novikoff: Lysosomes in the rat sciatic nerve following crush. J. Cell Biol. 27, 651–669 (1965).Google Scholar
  16. Honjin, R., T. Nakamura, and M. Imura: Electron microscopy of peripheral nerve fibres. III. On the axoplasmic changes during Wallerian degeneration. Okajimas Folia anat. jap. 33, 131–156 (1959).Google Scholar
  17. Inuce, S.: Structural changes of nerve fibres in the early phases of limb regeneration in the adult newt with special references to fine structures of regenerating nerve fibres. Gunma J. med. Sci. 9, 302–328 (1960).Google Scholar
  18. Kapeller, K., and D. Mayor: The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electron microscopy. Proc. roy. Soc. B 167, 282–292 (1967).Google Scholar
  19. -: Accumulation of organelles distal to the site of constriction of post-ganglionic sympathetic nerves. J. Physiol. (Lond.) 194, 95–96P (1968).Google Scholar
  20. Kerkut, G. A., A. Shapira, and R. J. Walker: The transport of labelled material from CNS ⇋ muscle along a nerve trunk. Comp. Biochem. Physiol. 23, 729–748 (1967).Google Scholar
  21. Lampert, P., J. M. Blumberg, and A. Pentschew: An electron microscopic study of dystrophic axons in the gracile and cuneate nuclei of vitamin E-deficient rats. Axonal dystrophy in vitamin E deficiency. J. Neuropath. exp. Neurol. 23, 60–77 (1964).Google Scholar
  22. -, and M. Cressman: Axonal regeneration in the dorsal columns of the spinal cord of adult rats. An electron microscopic study. Lab. Invest. 13, 825–839 (1964).Google Scholar
  23. Lubińska, L.: Elasticity and distensibility of nerve tubes. Acta Biol. exp. (Warszawa) 16, 73–90 (1952).Google Scholar
  24. -: Outflow from cut ends of nerve fibres. Exp. Cell Res. 10, 40–47 (1956).Google Scholar
  25. -: Axoplasmic streaming in regenerating and in normal nerve fibres. In: Progress in brain research vol. 13, (ed. M. Singer and J. P. Schadé), p. 1–71. Amsterdam: Elsevier Publ. Co. 1964.Google Scholar
  26. -, S. Niemierko, B. Oderfeld, and L. Szwarc: Behaviour of acetylcholinesterase in isolated nerve segments. J. Neurochem. 11, 493–503 (1964).Google Scholar
  27. -, and J. Zelená: Bidirectional movements of axoplasm in peripheral nerve fibers. Acta Biol. exp. (Warszawa) 23, 239–247 (1963).Google Scholar
  28. Niemierko, S., and L. Lubińska: Two fractions of axonal acetylcholinesterase exhibiting different behaviour in severed nerves. J. Neurochem. 14, 761–769 (1967).Google Scholar
  29. Ohmi, S.: Electron microscopic study on Wallerian degeneration of the peripheral nerve. Z. Zellforsch. 54, 39–67 (1961).Google Scholar
  30. Reynolds, E. S.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).Google Scholar
  31. Sabatini, D. D., K. Bensch, and R. J. Barrnett: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963).Google Scholar
  32. Schlote, W.: Zur Abgrenzung reaktiver von regenerativen Vorgängen im Axoplasma zentraler Nervenfasern. Verh. Dtsch. Ges. Path., 50. Tagg Heidelberg 1966a, S. 277–280.Google Scholar
  33. -: Der Aufbau von Schichtenkörpern im Axoplasma durchtrennter Opticusfasern distal der Läsion. J. Ultrastruct. Res. 16, 548–568 (1966b).Google Scholar
  34. Vial, J. D.: The early changes in the axoplasm during Wallerian degeneration. J. biophys. biochem. Cytol. 4, 551–556 (1958).Google Scholar
  35. Watson, W. E.: Centripetal passage of labelled molecules along mammalian motor axons. J. Physiol. (Lond.) 196, 122–123P (1968).Google Scholar
  36. Wechsler, W., u. H. Hager: Elektronenmikroskopische Befunde zur Feinstruktur von Axonveränderungen in regenerierenden Nervenfasern des Nervus ischiadicus der weißen Ratte. Acta neuropath. (Berl.) 1, 489–506 (1962).Google Scholar
  37. Weiss, P.: Neuronal dynamics. Neurosciences Res. Progr. Bull. 5, 371–400 (1967).Google Scholar
  38. -, and A. Pillai: Convection and fate of mitochondria in nerve fibers: axonal flow as vehicle. Proc. nat. Acad. Sci. (Wash.) 54, 48–56 (1965).Google Scholar
  39. -, A. C. Taylor, and A. Pillai: The nerve fiber as a system in continuous flow: microcinematographic and electronmicroscopic demonstrations. Science 136, 330 (1962).Google Scholar
  40. Wettstein, R., and J. R. Sotelo: Electron microscope study on the regenerative process of peripheral nerves of mice. Z. Zellforsch. 59, 708–730 (1963).Google Scholar
  41. Zelená, J.: Bidirectional movements of mitochondria along axons of an isolated nerve segment. Z. Zellforsch. (in press).Google Scholar
  42. -, and E. Gutmann: Bidirectional shifting of mitochondria along axons. [In Czech.] Čs. Fysiol. 17, 39–40 (1968a).Google Scholar
  43. - - Accumulation of organelles in central and peripheral stumps of interrupted axons In: Metabolism of nucleic acids and proteins and the function of the neuron (ed. Z. Lodin), p. 140–152. Excerpta med. Monograph Series, Amsterdam 1968b.Google Scholar
  44. -, and L. Lubińska: Early changes of acetylcholinesterase activity near the lesion in crushed nerves. Physiol. bohemoslov. 11, 261–268 (1962).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Jiřina Zelená
    • 1
    • 2
  • Liliana Lubińska
    • 1
    • 2
  • E. Gutmann
    • 1
    • 2
  1. 1.Institute of PhysiologyCzechoslovak Academy of SciencesPragueCzechoslovakia
  2. 2.Department of NeurophysiologyNencki Institute of Experimental BiologyWarsawPoland

Personalised recommendations