Starvation effects on the ultrastructure of amoeba mitochondria

  • Edward W. Daniels
  • Evelyn P. Breyer


Mitochondria in non-starved giant amoebae, Pelomyxa carolinensis, contain tubules lying at random in the matrix. Many mitochondria in starved amoebae have enlarged tubules aligned in a zigzag pattern. Tubules within the zigzag region are separated by very little matrix material. Some of these altered mitochondria are found in 70% of amoebae starved for only 24 hours, and in nearly all P. carolinensis starved for 8 days or longer. The percentage of such altered mitochondria increases from zero in most well-fed amoebae, to about 60% after two weeks of continuous starvation. Most P. carolinensis starved at 25° C survive less than three weeks. Microfilament bundles are observed in the matrix of some mitochondria in amoebae starved for more than two days.


Matrix Material Zigzag Pattern Microfilament Bundle Starvation Effect Altered Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andresen, N.: Cytoplasmic changes during starvation and during neutral red staining of the amoebae Chaos diffluens (A. proteus). C. R. Lab. Carlsberg 25, 169–189 (1945).Google Scholar
  2. -: Cytological investigations on the giant amoeba, Chaos chaos L. C. R. Lab. Carlsberg 29, 435–555 (1956).Google Scholar
  3. -, and H. Holter: Cytoplasmic changes during starvation of the amoeba Chaos chaos L. C. R. Lab. Carlsberg 25, 107–146 (1945).Google Scholar
  4. Borner, K., u. H. Mattenheimer: Nachweis von Enzymen der Glycolyse und des Tricarbonsäurecyclus in Amöben (Chaos chaos L.). Biochim. biophys. Acta (Amst.) 34, 592–593 (1959).Google Scholar
  5. Borysko, E., and J. Roslanksky: Methods for correlated optical and electron microscopic studies on amoebae. Ann. N.Y. Acad. Sci. 78, 432–447 (1959).Google Scholar
  6. Chapman-Andresen, C., and J. R. Nilsson: Studies on endocytosis in amoebae. The distribution of pinocytically ingested dyes in relation to food vacuoles in Chaos chaos. II. Electron microscopic observations using alcian blue. C. R. Lab. Carlsberg 36, 189–221 (1967).Google Scholar
  7. Carlstrom, D., and M. Møller: Further observations on the native and recrystallized crystals of the amoeba, Amoeba proteus. Exp. Cell Res. 24, 393–404 (1961).Google Scholar
  8. Cohen, A. I.: The cell in starvation: Physiological and chemical observations. J. biophys. biochem. Cytol. 3, 923–932 (1957).Google Scholar
  9. Iglesia, De la F. A., E. A. Porta, and W. S. Hartroft: Effects of dietary protein levels on the Saimiri sciureus. Exp. molec. Path. 7, 182–195 (1967).Google Scholar
  10. Friz, C. T.: The free amino acid levels of Pelomyxa carolinesis, Amoeba dubia and A. proteus. J. Protozool. 15, 49–152 (1968).Google Scholar
  11. Griffin, J. L.: Isolation and chemical identification of the crystalline cytoplasmic inclusions in the large, free-living amoebae. Biol. Bull. 117, 382 (1959).Google Scholar
  12. -: The isolation, characterization, and identification of the crystalline inclusions of the large free-living amoebae. J. biophys. biochem. Cytol. 7, 227–234 (1960).Google Scholar
  13. -: Identification of amoeba crystals. II. Triuret in two crystal forms. Biochim. biophys. Acta (Amst.) 47, 433–439 (1961).Google Scholar
  14. Grunbaum, B. W.: Cytoplasmic crystals of the amoebae, Amoebae proteus and Chaos chaos. 2. Preparation of amoeba crystals in milligram quantities. C. R. Lab. Carlsberg 32, 179–183 (1961).Google Scholar
  15. -, K. M. Møller, and R. S. Thomas: Cytoplasmic crystals of the amoebae. Amoeba proteus and Chaos chaos. Exp. Cell Res. 18, 385–389 (1959).Google Scholar
  16. Hackenbrock, C. R.: Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J. Cell Biol. 30, 269–297 (1966).Google Scholar
  17. -: Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastruetural transformations in mitochondria. J. Cell Biol. 37, 345–369 (1968).Google Scholar
  18. Holter, H., and E. Zeuthen: Metabolism and reduced weight in starving Chaos chaos. C. R. Lab. Carlsberg, Ser. chim. 26, 277–296 (1948).Google Scholar
  19. Lehninger, A. L.: The mitochondrion. Molecular basis of structure and function. First edit. New York: W. A. Benjamin, Inc. 1964.Google Scholar
  20. -: Molecular basis of mitochondrial structure and function. In: Molecular organization and biological function, ed. J. M. Allen, p. 107–133. Pub. New York-Evanston-London: Harper and Row 1967.Google Scholar
  21. Levy, M. R., and A. M. Elliott: Biochemical and ultrastructural changes in Tetrahymena pyriformis during starvation. J. Protozool. 15, 208–222 (1968).Google Scholar
  22. Mast, S. O., and W. F. Hahnert: Feeding, digestion, and starvation in Amoeba proteus (Leidy). Physiol. Zool. 8, 255–272 (1935).Google Scholar
  23. Pace, D. M., and B. W. McCashland: Effects of low concentrations of cyanide on growth and respiration in Pelomyxa carolinensis Wilson. Proc. Soc. exp. Biol. (N.Y.) 76, 165–168 (1951).Google Scholar
  24. Pappas, G. D.: Electron microscope studies on amoebae. Ann. N.Y. Acad. Sci. 78, 448–473 (1959).Google Scholar
  25. -, and P. W. Brandt: Mitochondria. I. Fine structure of the complex patterns in the mitochondria of Pelomyxa carolinensis Wilson (Chaos chaos L.). J. biophys. biochem. Cytol. 6, 85–90 (1959).Google Scholar
  26. Richter, W. R., R. J. Stein, and L. E. Blockus: Experimental production of intramitochondrial filaments in dog liver. Proc. Intern. Congr. for Electron Microscopy, Kyoto, Japan. Maruzen Co., Ltd. Nihonbashi, Tokyo, Japan. Electron Microscopy 2, 615–616 (1966).Google Scholar
  27. Svoboda, D., H. Grady, and J. Higginson: The effects of chronic protein deficiency in rats. II. Biochemical and ultrastruetural changes. Lab. Invest. 15, 731–749 (1966).Google Scholar
  28. -, and J. Higginson: Ultrastructural changes produced by protein and related deficiencies in the rat liver. Amer. J. Path. 45, 353–379 (1964).Google Scholar
  29. Thomas, R. S.: Cytoplasmic crystals of the amoebae, Amoeba proteus and Chaos chaos. I. Isolation and purification of the crystals and determination of their density. C. R. Lab. Carlsberg 32, 155–178 (1961).Google Scholar
  30. Thomson, J., and E. W. Daniels: Cytochrome oxidase in radiosensitive and radioresistant amoebae. Proc. Soc. exp. Biol. (N.Y.) 107, 916–919 (1961).Google Scholar
  31. Wilber, C. G.: Digestion of fat in the rhizopod, Pelomyxa carolinensis. Biol. Bull. 83, 320–325 (1942).Google Scholar
  32. -: Origin and function of the protoplasmic constituents in Pelomyxa carolinensis. Biol. Bull. 88, 207–219 (1945).Google Scholar
  33. -: The lipids in Pelomyxa carolinensis. Biol. Bull. 91, 235 (1946).Google Scholar
  34. Zeuthen, E.: Reduced weight and volume during starvation of the amoeba, Chaos chaos L. C. R. Lab. Carlsberg, Ser. chim. 26, 267–276 (1948).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Edward W. Daniels
    • 1
  • Evelyn P. Breyer
    • 1
  1. 1.Division of Biological and Medical ResearchArgonne National LaboratoryArgonneUSA

Personalised recommendations