Computational Mechanics

, Volume 17, Issue 3, pp 186–195 | Cite as

A coupled finite element-element-free Galerkin method

  • T. Belytschko
  • D. Organ
  • Y. Krongauz


A procedure is developed for coupling meshless methods such as the element-free Galerkin method with finite element methods. The coupling is developed so that continuity and consistency are preserved on the interface elements. Results are presented for both elastostatic and elastodynamic problems, including a problem with crack growth.


Finite Element Method Information Theory Galerkin Method Interface Element Meshless Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belytschko, T.; Chang, H. S.; Lu, Y. Y. 1989: A variationally coupled finite element-boundary element method. Computers and Structures 33 (1), 17–20Google Scholar
  2. Belytschko, T.; Lu, Y. Y.; Gu, L. 1994: Element-free Galerkin methods. International Journal of Numerical Methods in Engineering 37: 229–256Google Scholar
  3. Belytschko, T.; Lu, Y. Y.; Gu, L.; Tabbara, M. (1995). Element-free Galerkin methods for static and dynamic fracture. International Journal of Solids and Structures, Volume 32, # 17, pp 2547–2570Google Scholar
  4. Belytschko, T.; Tabbara M. (to appear): Dynamic fracture using element-free Galerkin methods. International Journal of Numerical Methods in EngineeringGoogle Scholar
  5. Decker, R. F. (Ed.) 1979: Source Book on Maraging Steels. American Society for MetalsGoogle Scholar
  6. Hughes, T. J. R. 1987: The Finite Element Method. Englewood Cliffs, New Jersey: Prentice-HallGoogle Scholar
  7. Kalthoff, J. F.; Winkler, S. 1987: Failure mode transition at high rates of shear loading. In C. Y. Chiem, H. D. Kunze, and L. W. Meyer (Eds.), International Conference on Impact Loading and Dynamic Behavior of Materials, Volume 1, pp. 185–195Google Scholar
  8. Lancaster, P.; Salkauskas, K. 1981: Surfaces generated by moving least squares methods. Mathematics of Computation 37: 141–158Google Scholar
  9. Lancaster, P.; Salkauskas, K. 1986: Curve and Surface Fitting. Academic PressGoogle Scholar
  10. Li, F. Z.; Shih, C. F.; Needleman, A. 1985: A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics 21 (2): 405–421Google Scholar
  11. Liu, W. K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T. 1995: Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering 38: 1655–1679Google Scholar
  12. Lu, Y. Y.; Belytschko, T.; Gu, L. 1994. A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering 113: 397–414Google Scholar
  13. Lu, Y. Y.; Belytschko, T.; Liu, W. K. 1991: A variationally coupled FE-BE method for elasticity and fracture mechanics. Computer Methods in Applied Mechanics and Engineering 85: 21–37Google Scholar
  14. Lu, Y. Y.; Belytschko, T.; Tabbara, M. (to appear): Element-free Galerkin methods for wave propagation and dynamic fracture. Computer Methods in Applied Mechanics and EngineeringGoogle Scholar
  15. Moran, B.; Shih, C. F. 1987: Crack tip and associated domain integrals from momentum and energy balance. Engineering Fracture Mechanics 27 (6): 615–641Google Scholar
  16. Nayroles, B.; Touzot, G.; Villon, P. 1992: Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics 10: 307–318Google Scholar
  17. Nishioka, T.; Atluri, S. N. 1983: A numerical study of the use of path independent integrals in elasto-dynamic crack propagation. Engineering Fracture Mechanics 18 (1): 23–33Google Scholar
  18. Nishioka, T.; Atluri, S. N. 1984: On the computation of mixed mode K-factors for a dynamical propagating crack, using path-indpendent integrals J infk. Engineering Fracture Mechanics 20 (2): 193–208Google Scholar
  19. Nishioka, T.; Atluri, S. N. 1986: Computational methods in dynamic fracture. In S. N. Atluri, (Ed.), Computational Method in the Mechanics of Fracture, Chapter 10, pp. 336–383. ElsevierGoogle Scholar
  20. Timoshenko, S. P.; Goodier, J. N. 1970: Theory of Elasticity (Third ed.). New York: McGraw HillGoogle Scholar
  21. Williams, J. R.; Amaratunga, K. 1994: Introduction to wavelets in engineering. International Journal for Numerical Methods in Engineering 37: 2365–2388Google Scholar
  22. Yau, J. F.; Wang, S. S.; Corten, H. T. 1980: A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. Journal of Applied Mechanics 47: 335–341Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • T. Belytschko
    • 1
  • D. Organ
    • 1
  • Y. Krongauz
    • 1
  1. 1.Department of Civil Engineering, Robert R. McCormick School of Engineering and Applied Science, The Technological InstituteNorthwestern UniversityEvanstonUSA

Personalised recommendations