Veterinary Research Communications

, Volume 12, Issue 2–3, pp 169–178 | Cite as

Bovine and canine acute phase proteins

  • P. D. Eckersall
  • J. G. Conner
Research Article


Acute phase proteins are serum proteins which increase in concentration during the acute phase response to inflammation or infection. The response occurs in all animals, but in different species the response of individual proteins can be significantly different. Of the numerous acute phase proteins which have been identified in humans, a number have been examined in cattle and dogs but usually on an individual basis with little reference to their part in the acute phase response. Biochemical, physiological and clinical investigations into haptoglobin, fibrinogen, α1-proteinase inhibitor, ceruloplasmin, seromucoid and C-reactive protein of cattle and dogs have therefore been reviewed with the emphasis on their role in this response to tissue damage.


Public Health Acute Phase Fibrinogen Tissue Damage Veterinary Medicine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. C., Bienvenu, J., Laurent, P. & Suskind, R. M. 1982. Marker proteins in inflammation, (de Gruyter, New York)Google Scholar
  2. Barsanti, J. A., Kristensen, F. & Drumheller, F. B. 1977. Analysis of serum proteins, using agarose electrophoresis in normal dogs and dogs naturally infected with Dirofilaria immitis. Am. J. Vet. Res., 38, 1055–1058.Google Scholar
  3. Beatty, K., Bieth, J. & Travis, J. 1980. Kinetics of association of serine proteinases with native and oxidised α1-proteinase inhibitor and α1-antichymotrypsin. J. Biol. Chem., 255, 3931–3934Google Scholar
  4. Bingley, J. B. & Dick, A. T. 1969. The pH optimum for ceruloplasmin oxidase activity in the plasma of several species of animal. Clin. Chim. Acta., 25, 480–482Google Scholar
  5. Blakeslee, D. & Stone, W. H. 1971. Serum antigens of cattle. III Immunologic assay of cattle haptoglobin. Vox. Sang., 21, 175–182Google Scholar
  6. Bremner, K. C. 1964. Studies on haptoglobin and haemopexin in the plasma of cattle. Aust. J. Exp. Biol. Med. Sci., 42, 643–656Google Scholar
  7. Calabrese, L., Malatesta, F. & Barra, D. 1981. Purification and properties of bovine caeruloplasmin. Biochem. J., 199, 667–673Google Scholar
  8. Caspi, D., Baltz, M. L., Snel, F., Gruys, E., Niv, D., Batt, R., Munn, E. A., Buttress, N. & Pepys, M. B. 1984. Isolation and characterisation of C-reactive protein from the dog. Immunology, 53, 307–313Google Scholar
  9. Coles, E. H. 1986. Veterinary clinical pathology. (W. B. Saunders Co., Philadelphia), 22–23Google Scholar
  10. Conner, J. G., Eckersall, P. D., Doherty, M. & Douglas, T. A. 1986a. Acute phase response and mastitis in the cow. Res. Vet. Sci., 41, 126–128Google Scholar
  11. Conner, J. G., Eckersall, P. D. & Wiseman, A. 1986b. The acute phase response in the cow and dog. Prot. Biol. Fluids, 34, 509–512Google Scholar
  12. Conner, J. G., Eckersall, P. D., Wiseman, A. & Douglas, T. A. 1988a. Bovine acute phase following turpentine injection. Res. Vet. Sci. 44, 82–88Google Scholar
  13. Conner, J. G., Eckersall, P. D., Ferguson, J. & Douglas, T. A. 1988b. The acute phase response in the dog following surgical trauma. Res. Vet. Sci., (in press)Google Scholar
  14. Deldar, A., Naylor, J. M. & Bloom, J. C. 1984. Effects of Escherichia coli on leukocyte and platelet counts, fibrinogen concentrations, and blood clotting in colostrum-fed and colostrum deficient neonatal calves. Am. J. Vet. Res., 45, 670–677Google Scholar
  15. Dillman, R. C. & Coles, E. H. 1966. A canine serum fraction analagous to human C-reactive protein. Am. J. Vet. Res., 27, 1769–1775Google Scholar
  16. Dobryszycka, W., Elwyn, D. H. & Kurral, J. C. 1969. Isolation and chemical composition of canine haptoglobin. Biochim. Biophys. Acta., 175, 220–222Google Scholar
  17. Dooley, D. M., Cote, C. E., Coolbaugh, T. S. & Jenkins, P. L. 1981. Characterization of bovine ceruloplasmin. FEBS Letters, 131, 363–365Google Scholar
  18. Eckersall, P. D., Sullivan, M., Kirkham, D. & Mohammed, N. A. 1985. The acute phase response detected in dogs by conacanavalin A binding. Vet. Res. Comm., 9, 233–238Google Scholar
  19. Goodger, B. V. 1972. Preliminary characterization of the bovine polymeric Hb binding protein and comparison of some properties with human haptoglobins. Aust. J. Exp. Biol. Med. Sci., 50, 11–20Google Scholar
  20. Gordon, A. H. & Koj, A. 1985. The acute phase response to injury and infection. The roles of interleukin 1 and other mediators. Elsevier, AmsterdamGoogle Scholar
  21. Hol, P. R. & Gruys, E. 1984. Amyloid A proteins in different species. Appl. Pathol., 2, 316–327Google Scholar
  22. Honkanen-Buzalski, T., Katila, T. & Sandholm, M. 1981. Milk α1-antitrypsin activity during clinical and experimental bovine mastitis. Acta. Vet. Scand., 22, 360–368Google Scholar
  23. Honkanen-Buzalski, T. & Sandholm, M. 1981. Trypsin-inhibitors in mastitic milk and colostrum: correlation between trypsin-inhibitor capacity, bovine serum albumin and somatic cell contents. J. Dairy Sci., 48, 213–223Google Scholar
  24. Jacobsson, K. 1955. Studies on the trypsin and plasmin inhibitors in human blood serum. Scand. J. Clin. Lab. Invest. Suppl. 14, 55–102Google Scholar
  25. Kaplan, M. H. & Volanakis, J. E. 1974. Interaction of C-reactive protein complexes with the complement system. I. Consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccaride and the choline phosphatides lecithin and sphingomyelin. J. Immunol., 112, 2135–2147Google Scholar
  26. Kohn, J., Hernandez, M. & Riches, P. G. 1978. The value of acute phase reactants in the management of disease. La Ricera, Clin. Lab., 8 (Suppl 1), 61–70Google Scholar
  27. Kohn, J., Whicher, J., Warren, C. & O'Kelly, T. 1980. The use of lectins to measure acute phase proteins in the serum or plasma of man and animals during inflammation and tissue breakdown. FEBS Letters, 109, 257–260Google Scholar
  28. Koj, A. 1974. Acute phase reactants. Their synthesis, turnover and biological significance. In: A. C.Allison, (ed) Structure and function of plasma proteins Vol. I. (Plenum Press, London). 73–131Google Scholar
  29. Laurell, C-B. 1985. Actue phase proteins—a group of protective proteins. Recent Advances in Clinical Biochemistry, 103–124Google Scholar
  30. Liberg, P. 1977. Agarose gel electrophoretic fractionation of serum proteins in adult cattle. Acta. Vet. Scand., 18, 335–348Google Scholar
  31. Liang, C. C. 1957. The formation of complexes between haemoglobins and plasma proteins in a variety of animals. Biochem. J., 66, 552–558Google Scholar
  32. Mattila, T., Saari, S. Vartiala, H. & Sandholm, M. 1984. Milk antitrypsin as a marker of bovine mastitis—correlation with bacteriology. J. Dairy Sci., 68, 114–122Google Scholar
  33. Maudsley, S. 1985. Phylogenetic studies of the C-reactive protein family. (PhD Thesis, University of London)Google Scholar
  34. McSherry, B. J., Horney, F. D. & deGroot, J. J. 1970. Plasma fibrinogen levels in normal and sick cows. Can. J. Comp. Med., 34, 191–197Google Scholar
  35. Makimura, S. & Suzuki, N. 1982. Quantitative determination of bovine serum haptoglobin and its elevation in some inflammatory diseases. Jpn. J. Vet. Sci., 44, 15–21Google Scholar
  36. Minocherri, F. 1965. Aspetto genetico delle aptoglobine di alcune specie animali. Arch. Vet. Ital., 16, 433–447Google Scholar
  37. Neuhaus, O. W. & Sogoian, V. P. 1961. The presence of haptoglobin in synovial fluid. Nature, 192, 558–559Google Scholar
  38. Panndorf, H., Richter, H. & Dittrich, B. 1976. Haptoglobin bei Haussaugetieren V. Arch. Exper. Vet. Med., 30, 193–202Google Scholar
  39. Peeters, H. 1986. Acute phase response. Protides of the biological fluids, 34, 223–690Google Scholar
  40. Pepys, M. B. 1981. C-reactive protein fifty years on Lancet, 1, 653–657Google Scholar
  41. Piercy, D. W. T. 1979. Acute phase responses to experimental Salmonellosis in calves and Colibacillosis in chickens: serum iron and ceruloplasmin. J. Comp. Path., 89, 309–319Google Scholar
  42. Polonovski, M. & Jayle, F. M. 1940. Preparation of a new fraction of the plasma proteins, haptoglobin. C. R. Acad. Sci., 211, 517–519Google Scholar
  43. Richter, H. 1974. Haptoglobin bei haussaugetieren III. Arch. Exper. Vet. Med., 28, 505–519Google Scholar
  44. Richter, H. 1975. Haptoglobin bei haussaugetieren IV. Arch. Exper. Vet. Med., 29, 217–230Google Scholar
  45. Riley, R. F. & Coleman, M. K. 1970. Isolation of C-reactive proteins of man, monkey, rabbit and dog by affinity chromatography on phosphorylated cellulose. Clin. Chim. Acta., 30, 483–496Google Scholar
  46. Riley, R. F. & Zontine, W. 1972. Further observation on the properties of dog C-reactive protein and the C-reactive protein response in the dog. J. Lab. Clin. Med., 80, 698–703Google Scholar
  47. Robey, F. A., Jones, K. D. & Steinberg, A. D. 1985. C-Reactive protein mediates the solubilization of nuclear DNA by complement in vitro. J. Exper. Med., 161, 1344–1356Google Scholar
  48. Sandholm, M., Honkanen-Buzalski, T. & Kangasniemi, R. 1984. Milk trypsin-inhibitor capacity as an indicator of bovine mastitis—a novel principle which can be automated. J. Dairy Res., 51, 1–9Google Scholar
  49. Schultze, H. E., Gollner, I., Heide, K., Schonenberger, M. & Schwick, G. 1955. Zur kenntnis der globuline des menschlichen normalserum. Z. Naturforsch., B: Anorg. Chem. Org. Chem., Biochem., Biophys. Biol., 10B, 463Google Scholar
  50. Shim, B-S., Yoon, C-S., Oh, S-K., Lee, T-H. & Kang, Y-S. 1971. Studies on swine and canine serum haptoglobins. Biochim. Biophys. Acta., 243, 126–136Google Scholar
  51. Spooner, R. L. 1973. Haemoglobin reactive protein in cattle: partial characterisation. Res. Vet. Sci., 14, 90–96Google Scholar
  52. Spooner, R. L. & Millar, J. K. 1971. The measurement of haemoglobin reactive protein as an aid to the diagnosis of acute inflammation. Vet. Rec., 88, 2–4Google Scholar
  53. Sutton, R. H. & Hobman, B. 1975. The value of plasma fibrinogen estimations in cattle: a comparison with total leucocyte and neutrophil counts. N. Z. Vet. J., 23, 21–27Google Scholar
  54. Sutton, R. H. & Johnson, M. 1977. The value of plasma fibrinogen estimations in dogs. A comparison with total leucocyte and neutrophil counts. J. Small Anim. Pract., 18, 277–281Google Scholar
  55. Tillet, W. S. & Francis, T. 1930. Serological reactions in pneumonia with non-protein somatic fraction of pneumococcus. J. Exper. Med., 52, 561–571Google Scholar
  56. Travis, J. & Johnson, D. 1981. Human α1-proteinase inhibitor. Met. in Enzym., 80, 754–765Google Scholar
  57. Travis, J. C. & Sanders, R. G. 1972. Haptoglobin evolution: polymeric forms of HP in the bovidae and cervidae. J. Exp. Zool., 180, 141–148Google Scholar
  58. Volanakis, J. E. & Kaplan, M. H. 1971. Specificity of C-reactive protein for choline phosphate residues of pneumococcal C-polysaccaride. Proc. Soc. Exp. Biol. Med., 236, 612–618Google Scholar
  59. Westermark, P., Johnson, K. H., Sletten, K. & Hayden, D. W. 1985. AA-amyloidosis in dogs: Partial amino acid sequence of protein AA and immunohistochemical cross-reactivity with human and cow. Comp. Biochem. Physiol., 82B, 211–215Google Scholar
  60. Westermark, P., Johnson, K. H., Westermark, G. T., Sletten, K. & Hayden, D. W. 1986. Bovine amyloid protein AA: Isolation and amino acid sequence analysis. Comp. Biochem. Physiol., 85B, 609–614Google Scholar

Copyright information

© Geo Abstracts Ltd 1988

Authors and Affiliations

  • P. D. Eckersall
    • 1
  • J. G. Conner
    • 1
  1. 1.Department of Veterinary Clinical BiochemistryUniversity of Glasgow Veterinary SchoolGlasgowUK

Personalised recommendations