Advertisement

Über den Einfluß der Kationenkonzentration im Erythrocyten auf die Lage der Sauerstoff-Dissoziationskurve des Blutes

  • H. Sommerkamp
  • K. Riegel
  • P. Hilpert
  • K. Brecht
Article

Summary

The interrelationship between oxygen affinity and cation concentration within the erythrocyte has been investigated, using blood samples from healthy adults, anemic children and erythrocyte suspensions whose cation concentration had been altered. It is shown that the position of the oxygen dissociation curve depends in part upon the cation concentration of the red blood cells; with a high intracellular cation concentration the dissociation curve shifts to the right, the opposite shift is seen with low cation concentration. The substitution of intracellular potassium by sodium does not influence the oxygen affinity unless the total cation concentration is changed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Adair, G. S.: The reproduction of the carbon dioxide curves of blood with an artificial mixture of hemoglobin and sodium bicarbonate. J. biol. Chem. 63, 515 (1925).Google Scholar
  2. 2.
    Albritton, E. C.: Standard values of blood. Philadelphia, London: W. B. Saunders Co. 1953.Google Scholar
  3. 3.
    Barcroft, J., and M. Camis: The dissociation curve of blood. J. Physiol. (Lond.) 39, 118 (1909).Google Scholar
  4. 4.
    Barron, E., S. Guzman, R. Munch and A. E. Sidwell Jr.: The influence of electrolytes on the oxygen dissociation curve of hemoglobin. Science 79, 39–40 (1937).Google Scholar
  5. 5.
    Bartels, H., u. H. Harms: Sauerstoffdissoziationskurven des Blutes von Säugetieren. Pflügers Arch. ges. Physiol. 268, 334 (1959).Google Scholar
  6. 6.
    Bartels, H., H. Harms, V. Probst, K. Riegel u. J. Schneider: Sauerstoffbindungskurve, fetales Hämoglobin und Erythrocytenform bei Frühgeburten und Säuglingen. Klin. Wschr. 37, 664 (1959).Google Scholar
  7. 7.
    Bartels, H., K. Betke, P. Hilpert, G. Niemeyer u. K. Riegel: Die sogenannte Standard-Sauerstoff-Dissoziationskurve des gesunden erwachsenen Menschen. Pflügers Arch. ges. Physiol. 272, 372 (1961).Google Scholar
  8. 8.
    Bolingbroke, V., and M. Maizels: Calcium ions and the permeability of human erythrocytes. J. Physiol. (Lond.) 149, 563 (1959).Google Scholar
  9. 9.
    Davson, H.: Studies on the permeability of erythrocytes: III. The cation content of erythrocytes of rabbit blood in hyper- and hypotonic sera. Biochem. J. 30, 821 (1936).Google Scholar
  10. 10.
    Dill, D. B., and J. H. Talbott: Oxygen dissociation curves and sodium and potassium distribution. Amer. J. Physiol. 90, 328 (1929).Google Scholar
  11. 11.
    Flynn, F., and M. Maizels: Cation control in human erythrocytes. J. Physiol. (Lond.) 110, 301 (1949).Google Scholar
  12. 12.
    Hald, P. M., M. Tutin, T. S. Danowski, P. H. Lavietes and P. Peters: Distribution of potassium and sodium in oxygenated human blood and their effects upon the movement of water between cells and plasma. Amer. J. Physiol. 149, 340 (1947).Google Scholar
  13. 13.
    Harris, E. J., and M. Maizels: Distribution of ions in suspensions of human erythrocytes. J. Physiol. (Lond.) 118, 40 (1952).Google Scholar
  14. 14.
    Hořejší, J., and A. Komárková: The influence of some factors of the red blood cells on the oxygen-binding capacity of hemoglobin. Clin. chim. Acta 5, 392 (1960).Google Scholar
  15. 15.
    Jacobs, M. H.: Osmotic properties of the erythrocyte. Biol. Bull. 62, 178 (1932).Google Scholar
  16. 16.
    Kennedy, A. C., and D. J. Valtis: The oxygen dissociation curve in anemia of various types. J. clin. Invest. 33, 1372 (1954).Google Scholar
  17. 17.
    Kono, H.: On the influence of salts upon the dissociation curve of hemoglobin. Jap. J. med. Sci., Trans. III, Biophysics 2, 1–24 (1931).Google Scholar
  18. 18.
    Maizels, M.: The anion and cation contents of normal and anemic bloods. Biochem. J. 30, 821 (1936).Google Scholar
  19. 19.
    Maizels, M., and M. Remington: Percentage of intercellular medium in human erythrocytes centrifuged from albumin and other media. J. Physiol. (Lond.) 145, 658 (1959).Google Scholar
  20. 20.
    Morse, M., D. E. Cassels and M. Holder: The position of the oxygen dissociation curve of the blood in normal children and adults. J. clin. Invest. 29, 1091 (1950).Google Scholar
  21. 21.
    Polonowsky, M., D. Santenoise et E. Stankoff: Sur un mécanisme hormonal de régulation de l'affinité de l'hémoglobine du sang pour l'oxygène. C. R. Soc. Biol. (Paris) 137, 92 (1943).Google Scholar
  22. 22.
    22.Ponder, E., and G. Saslow: The measurement of red cell volume II. Alterations in red cell volume in solutions of various tonicities. J. Physiol. (Lond.) 70, 169 (1930).Google Scholar
  23. 23.
    Zit. nach Rapoport, S.: J. clin. Invest. 26, 591 (1947).Google Scholar
  24. 24.
    Richards, D. W., Jr., and M. L. Strauss: Oxy-Hemoglobin dissociation curves of whole blood in anemia. J. clin. Invest. 4, 105 (1927).Google Scholar
  25. 25.
    Riecker, G., u. M. v. Bubnoff: Die intercelluläre Plasmamenge im Erythrocytensediment. Z. ges. exp. Med. 132, 102 (1959).Google Scholar
  26. 26.
    Sidwell, A. E., Jr., R. H. Munch, E. S. G. Barron and T. R. Hogness: The salt effect in the hemoglobin-oxygen equilibrium. J. biol. Chem. 123, 335 (1938).Google Scholar
  27. 27.
    Valtis, D. J., and A. G. Baikie: The influence of red cell thickness on the oxygen dissociation curve of blood. Brit. J. Haemat. 1, 146 (1955).Google Scholar
  28. 28.
    Wilbrandt, W.: Die Ionenpermeabilität der Erythrocyten in Nichtleiterlösung. Pflügers Arch. ges. Physiol. 243, 537 (1940).Google Scholar

Copyright information

© Springer-Verlag 1961

Authors and Affiliations

  • H. Sommerkamp
    • 1
  • K. Riegel
    • 1
  • P. Hilpert
    • 1
  • K. Brecht
    • 1
  1. 1.Aus dem Physiologischen Institut und der Kinderklinik der Universität TübingenGermany

Personalised recommendations