Advertisement

Journal of Materials Science

, Volume 30, Issue 10, pp 2463–2474 | Cite as

The positive temperature coefficient of resistivity in barium titanate

  • B. Huybrechts
  • K. Ishizaki
  • M. Takata
Review

Abstract

Positive temperature coefficient of resistivity (PTCR) materials have become very important components, and among these materials barium titanate compounds make up the most important group. When properly processed these compounds show a high PTCR at the Curie temperature (the transition temperature from the ferroelectric tetragonal phase to the paraelectric cube phase). In the first half of this paper literature related to the resistivity-temperature behaviour is discussed. As explained by the well established Heywang model, the PTCR effect is caused by trapped electrons at the grain boundaries. From reviewing experimental results in the literature it is clear that the PTCR effect can not be explained by assuming only one kind of electron trap. It is concluded that as well as barium vacancies, adsorbed oxygen as 3d-elements can act as electron traps. In the second half of this paper, the influence of the processing parameters on the PTCR related properties is discussed. Special emphasis is placed on the phenomenon that the conductivity and grain size decrease abruptly with increasing donor concentration above ∼ 0.3 at%. Several models explaining this phenomenon are discussed and apparent discrepancies in experimental data are explained.

Keywords

Barium Curie Temperature Related Property Tetragonal Phase Apparent Discrepancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Proteus, commercial brochure on “Shape-memory alloys”. Proteus, Stasegemsestwg 110E-B 8500 Kortrijk, Belgium (Kyodokumiai Insatsu, Nagaoka).Google Scholar
  2. 2.
    R. Shrout, D. Moffatt and W. Huebner, J. Mater. Sci. 26 (1991) 145.CrossRefGoogle Scholar
  3. 3.
    L. L. Rohlfing, R. E. Newnham, S. M. Pilgrim and J. Runt, J. Wave-Mater. Interact. 3 (1988) 273.Google Scholar
  4. 4.
    E. Kato and M. Hasegwa, J. Chem. Soc. Jpn Ind. Chem. Sect. 70 [3] (1967) 252.Google Scholar
  5. 5.
    T. Ota, I. Yamai and I. Takahashi, in “29th Ceramics Basics Science Symposium”. Nagaoka, Japan, 24–25 January 1991, 1A08 (1991) p. 8.Google Scholar
  6. 6.
    Idem, J. Am. Ceram. Soc. 75 (1992) 1772.CrossRefGoogle Scholar
  7. 7.
    R. S. Perkins, A. Ruegg, M. Fischer, P. Streit and A. Menth, IEEE Trans. Compon. Hybr. Manuf. Technol. 5 (1982) 225.Google Scholar
  8. 8.
    B. C. Hendrix, X. Wang, W. Chen and W. Q. Cui, J. Mater. Sci. Mater. Electron. 3 (1992) 113.CrossRefGoogle Scholar
  9. 9.
    M. Yethiraj, J. Solid State Chem. 88 (1990) 53.CrossRefGoogle Scholar
  10. 10.
    B. M. Kulwicki, in “Advances in Ceramics”, Vol. 1 “Grain boundary phenomena in electronic ceramics”, edited by L. M. Levinson and D. C. Hill (American Ceramic Society, Colombus, OH, 1981) pp. 138–53.Google Scholar
  11. 11.
    B. Jaffe, W. R. Cook and H. Jaffe, in “Piezoelectric Ceramics”, edited by J. P. Roberts and P. Popper (Academic Press, London, New York, 1971).Google Scholar
  12. 12.
    Electronic materials manufacturers association of Japan, Constant temperature PTC-heaterguide” (1990).Google Scholar
  13. 13.
    M. Kuwabara and K. Kumamoto, J. Amer. Ceram. Soc. 66 (1983) 214.Google Scholar
  14. 14.
    L. Meidong, I. J. Li, L. Hsiwei, C. Zhixiong and Y. Xi, Jpn J. Appl. Phys. 24 (1985) 308.Google Scholar
  15. 15.
    D. Y. Wang, F. S. Hwang and T. Y. Tseng., J. Am. Ceram. Soc. 73 (1990) 2767.Google Scholar
  16. 16.
    T. Y. Tseng and S. H. Wang., Mater, lett. 9 (1990) 164.CrossRefGoogle Scholar
  17. 17.
    H. Nagomoto, H. Kagotani and T. Okubo., J. Am. Ceram. Soc. 76 (1993) 2053.Google Scholar
  18. 18.
    Philips Components Industrial, Evere, Brussels (1992).Google Scholar
  19. 19.
    B. M. Kulwicki, PTC materials technology, “Advances in Ceramics”, Vol. 1, “Grain boundary phenomena in electronic ceramics, edited by L. M. Levinson and D. C. Hill (American Ceramic Society, Colombus, OH, 1981) pp. 155–66.Google Scholar
  20. 20.
    W. Heywang, Solid State Electron. 3 (1961) 51.CrossRefGoogle Scholar
  21. 21.
    Idem, J. Am. Ceram. Soc. 47 (1964) 484.Google Scholar
  22. 22.
    G. H. Jonker, Solid State Electron 7 (1964) 895.CrossRefGoogle Scholar
  23. 23.
    A. Amin, J. Am. Ceram. Soc. 72 (1989) 369.CrossRefGoogle Scholar
  24. 24.
    D. Y. Wang and K. Umeya, ibid. 73 (1990) 669.Google Scholar
  25. 25.
    G. Goodman, ibid. 46 (1963) 48.Google Scholar
  26. 26.
    H. Nemoto and I. Oda, ibid. 63 (1980) 398.Google Scholar
  27. 27.
    H. Sumino, O. Sakurai, K. Shinozaki and N. Mizutani, J. Ceram. Soc. Jpn 100 (1992) 97.Google Scholar
  28. 28.
    H. S. Maiti and R. N. Basu, Mater. Res. Bull. 21 (1986) 1107.CrossRefGoogle Scholar
  29. 29.
    J. Illingsworth, H. M. Al-Allak, A. W. Brinkman and J. Woods, J. Appl. Phys. 67 (1990) 2088.CrossRefGoogle Scholar
  30. 30.
    C. J. Peng and H. Y. Lu, J. Am. Ceram Soc. 71 [1] (1988) C44–46.CrossRefGoogle Scholar
  31. 31.
    H. P. Chen and T. Y. Tseng, J. Mater. Sci. Lett. 8 (1989) 1483.CrossRefGoogle Scholar
  32. 32.
    A. B. Alles, V. R. W. Amarakoon and V. L. Burdick, J. Am. Ceram. Soc. 72 (1989) 148.CrossRefGoogle Scholar
  33. 33.
    D. C. Sinclair and A. R. West, J. Appl. Phys. 66 (1989) 3850.CrossRefGoogle Scholar
  34. 34.
    M. Kuwabara, Solid State Electron 27 (1984) 929.CrossRefGoogle Scholar
  35. 35.
    B. Alles Aldo and V. L. Burdick, J. Am. Ceram. Soc. 76 (1993) 401.Google Scholar
  36. 36.
    S. Hishita, P. Blanchart, J. F. Baumard and P. Abelard, Jap. J. Appl. Phys. Ser. 2 Lattice Defects Ceram. (1989) 167.Google Scholar
  37. 37.
    S. Hishita, J. F. Baumard and P. Abelard, Coll. Phys. C1 Suppl. 1, 51, (1990) 979.Google Scholar
  38. 38.
    S. Hishita, K. Ito, J. F. Baumard and P. Abelard, J. Ceram. Soc. Jpn Int. Ed. 98 (8) (1990) 152.Google Scholar
  39. 39.
    S. Hishita, K. Ito, J.-F. Baumard and P. Abelard, J. Ceram. Soc. Jpn. 98 (1990) 885.Google Scholar
  40. 40.
    H. Ihrig and W. Puschert, J. Appl. Phys. 48 (1977) 3081.CrossRefGoogle Scholar
  41. 41.
    Haanstra and H. Ihrig, J. Am. Ceram. Soc. 63 (1980) 288.Google Scholar
  42. 42.
    B. Huybrechts, K. Ishizaki and M. Takata, ibid. 75 (1992) 722.CrossRefGoogle Scholar
  43. 43.
    J. Daniels, K. H. Hardtl and R. Wernicke, Philips Tech. Rev. 38(3) (1978) 73.Google Scholar
  44. 44.
    G. H. Jonker, Mater. Res. Bull. 2 (1967) 401.CrossRefGoogle Scholar
  45. 45.
    J. Daniels and R. Wernicke, Philips Res. Repts. 31 (1976) 544.Google Scholar
  46. 46.
    H. Igarashi, S. Hayakawa and K. Okazaki, Jpn. J. Appl. Phys. 20 (4) (1981) 135.Google Scholar
  47. 47.
    T. Takahashi, Y. Nakano and N. Ichinose, J. Ceram. Soc. Jpn. 98 (1990) 879.Google Scholar
  48. 48.
    Wernicke R., Philips Res. Repts 31 (1976) 526.Google Scholar
  49. 49.
    H. M. Al-Allak, G. J. Russel and J. Woods, J. Phys. D Appl. Phys. 20 (1987) 1645.CrossRefGoogle Scholar
  50. 50.
    Tsai-Fa Lin, Chen-Ti Hu and I-Nan Lin, J. Mater. Sci. 25 (1990) 3029.CrossRefGoogle Scholar
  51. 51.
    H. M. Al-Allak, A. W. Brinkman, G. J. Russel A. W. Roberts and J. Woods, J. Phys. D Appl. Phys. 21 (1988) 1226.CrossRefGoogle Scholar
  52. 52.
    Hong-Soo Kim, Gun Yong Sung and Chong Hee Kim, J. Am. Ceram. Soc. 75 (1992) 587.Google Scholar
  53. 53.
    G. V. Lewis, C. R. A. Catlow and R. E. W. Casselton, ibid. 68 (1985) 555.Google Scholar
  54. 54.
    G. V. Lewis and C. R. A. Catlow, Br. Ceram. Proc. 36 (1985) 187.Google Scholar
  55. 55.
    M. H. Chan, M. P. Harmer and D. M. Smyth J. Am. Ceram. Soc. 69 (1986) 507.CrossRefGoogle Scholar
  56. 56.
    G. Koschek and E. Kubalek, ibid. 68 (1985) 582.Google Scholar
  57. 57.
    G. Koschek, DKG 66(3/4) (1989) 128.Google Scholar
  58. 58.
    H. Ihrig, J. Am. Ceram. Soc. 64 (1981) 617.Google Scholar
  59. 59.
    H. Ueoka and M. Yodogawa, IEEE Trans. Manuf. Technol. 3(2) (1974) 77.Google Scholar
  60. 60.
    H. Ueoka, Ferrroelectrics 7 (1974) 351.Google Scholar
  61. 61.
    H. M. Al-Allak, A. W. Brinkman, G. J. Russel and J. Woods, J. Appl. Phys. 63 (1988) 4530.CrossRefGoogle Scholar
  62. 62.
    H. J. Hagemann and H. Ihrig, Phys. Rev. B 20 (1979) 3871.CrossRefGoogle Scholar
  63. 63.
    H. J. Hagemann and D. Hennings, J. Am. Ceram. Soc. 64 (1981) 590.Google Scholar
  64. 64.
    T. R. N. Kutty and P. Murugaraj, Mater. Lett. 3 (5,6) (1985) 195.CrossRefGoogle Scholar
  65. 65.
    T. R. N. Kutty, P. Murugaraj and Gajbhiye, Ibid. 2 (5A) (1984) 396.Google Scholar
  66. 66.
    T. R. N. Kutty, D. L. Gomathi and P. Murugaraj, Mater. Res. Bull. 21 (1986) 1093.CrossRefGoogle Scholar
  67. 67.
    Y. M. Chiang and T. Takagi, J. Am. Ceram. Soc. 73 (1990) 3286.Google Scholar
  68. 68.
    S. B. Desu and D. A. Payne, ibid. 73 (1990) 3416.Google Scholar
  69. 69.
    Y. Matsuo, M. Fujimura, H. Sasaki, K. Nagase and S. Hayakawa, Ceram. Bull. 47 (1968) 292.Google Scholar
  70. 70.
    H. F. Cheng, J. Appl. Phys. 66 (1989) 1382.Google Scholar
  71. 71.
    V. Ravi and T. R. N. Kutty, J. Am. Ceram. Soc. 75 (1992) 203.CrossRefGoogle Scholar
  72. 72.
    H. M. O'Bryan and J. Thomson, ibid. 57 (1974) 522.Google Scholar
  73. 73.
    K. W. Kirby and B. A. Wechsler, ibid. 74 (1991) 1841.CrossRefGoogle Scholar
  74. 74.
    D. E. Rase and Roy Rustum, ibid. 38 (1955) 389.Google Scholar
  75. 75.
    Y. Matsuo and H. Sasaki, ibid. 54 (1971) 471.Google Scholar
  76. 76.
    D. F. K. Hennings, R. Janssen and P. J. L. Reynen, ibid. 70 (1987) 23.CrossRefGoogle Scholar
  77. 77.
    Tsai-Fa Lin, Chen-ti Hu and I-Nan Lin, ibid. 73 (1990) 531.Google Scholar
  78. 78.
    H. M. Al-Allak, T. V. Parry, G. J. Russel and J. Woods, J. Mater. Sci. 23 (1988) 1083.CrossRefGoogle Scholar
  79. 79.
    D. Hennings, Sci. Ceram. 12 (1984) 405.Google Scholar
  80. 80.
    S. Osaki, B. Huybrechts and K. Ishizaki, J. Ceram. Soc. 101 (1993) 955.Google Scholar
  81. 81.
    B. Huybrechts, J. Eur. Ceram. Soc. 11 (1993) 395.CrossRefGoogle Scholar
  82. 82.
    In-Chyuan Ho and Shen-Li Fu, J. Am. Ceram. Soc. 75 (1992) 728.CrossRefGoogle Scholar
  83. 83.
    H. Schmelz and A. Meyer, DKG 59 (1982) 436.Google Scholar
  84. 84.
    C. J. Ting, C. J. Peng, H. Y. Lu and S. T. Wu, ibid. 73 (1990) 329.Google Scholar
  85. 85.
    S. Shiraski and K. Kakegawa in “Fine Ceramics”, edited by S. Saito (Elsevier Science, New York, 1985) pp. 150–61.Google Scholar
  86. 86.
    A. Hasegawa, Fujitsu Satoru, K. Koumoto and H. Yanagida, J. Ceram. Soc. Jpn 99 (1991) 718.Google Scholar
  87. 87.
    G. H. Jonker and E. E. Havinga, Mater. Res. Bull. 17 (1982) 345.CrossRefGoogle Scholar
  88. 88.
    M. Drofenik, A. Popovic, L. Irmancnik, D. Kolar and V. Krasevec, J. Am. Ceram. Soc. (1982) C203.Google Scholar
  89. 89.
    M., Drofenik, A. Popovic and D. Kolar, Ceram. Bull 63 (1984) 702.Google Scholar
  90. 90.
    M. Drofenik, J. Am. Ceram. Soc. 70 (1987) 311.CrossRefGoogle Scholar
  91. 91.
    Idem, ibid. 73 (1990) 1587.CrossRefGoogle Scholar
  92. 92.
    Idem, ibid. 69 (1986) C8.CrossRefGoogle Scholar
  93. 93.
    H. M. Al-Allak, J. Illingsworth, A. W. Brinkman, G. J. Russel and J. Woods. J. Appl. Phys. 64 (1988) 6477.CrossRefGoogle Scholar
  94. 94.
    S. B. Desu and D. A. Payne, J. Am. Ceram. Soc 73 (1990) 3407.Google Scholar
  95. 95.
    P. Blanchart, J. F. Baumard and P. Abelard, ibid. 75 (1992) 1068.CrossRefGoogle Scholar
  96. 96.
    G. V. Lewis and C. R. A. Catlow, Rad. Effects 73 (1983) 307.Google Scholar
  97. 97.
    G. H. Jonker and E. E. Havinga, Mater. Res. Bull. 17 (1982) 345.CrossRefGoogle Scholar
  98. 98.
    W. Heywang, J. Mater. Sci. 6 (1971) 1214.CrossRefGoogle Scholar
  99. 99.
    B. Huybrechts, K. Ishizaki and M. Takata, in “Gas Pressure Effects on Materials Processing and Design”, edited by K. Ishizaki, E. Hodge, M. Concannon, Vol. 251 (MRS. Pittsburg, PA, 1992) pp. 239–44.Google Scholar
  100. 100.
    B. Huybrechts, K. Ishizaki and M. Takata, in “Grain Boundary Controlled Properties of Fine Ceramics, edited by K. Ishizaki, K. Niihara, M. Isotani, and R. Ford (Elsevier Science, London, 1992) pp. 32–9.Google Scholar
  101. 101.
    G. H. Jonker, in “Advance in Ceramics”, Vol. 1, “Grain boundary phenomena in electronic ceramics”, edited by L. M. Levinson and D. C. Hill (American Ceramic Society, Colombus, OH, 1981) pp. 155–66.Google Scholar
  102. 102.
    B. Huybrechts, K. Ishizaki and M. Takata, J. Am. Ceram. Soc. 77 (1994) 286.Google Scholar
  103. 103.
    Idem, in “Hot Isostatic Pressing “93”, edited by L. Delaey, W. Tas and W. Kaysser (Elsevier Science, Amsterdam, 1993) pp. 451–8.Google Scholar
  104. 104.
    U. Knauer, Phys. Status Solidi 53 (1979) 207.Google Scholar
  105. 105.
    Y. M. Chiang and T. Takagi J. Am. Ceram. Soc. 73 (1990) 3278.Google Scholar
  106. 106.
    S. D. Desu and D. A. Payne, ibid. 73 (1990) 3398.Google Scholar
  107. 107.
    Idem, ibid. 73 (1990) 3391.Google Scholar
  108. 108.
    Y. M. Chiang and T. Takagi, ibid. 75 (1992) 2017.CrossRefGoogle Scholar
  109. 109.
    S. B. Desu and D. A. Payne, ibid. 75 (1992) 2020.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • B. Huybrechts
    • 1
  • K. Ishizaki
    • 1
  • M. Takata
    • 1
  1. 1.Nagaoka University of TechnologyNagaoka, NiigataJapan

Personalised recommendations