Current Genetics

, Volume 19, Issue 1, pp 49–54 | Cite as

Organization of the chloroplast genome in the red alga Porphyra yezoensis

  • M. S. Shivji
Original Articles

Summary

A comprehensive assessment of the origin and evolution of plastids will require more information on the nature of plastid genomes from non-green algae. I have constructed a physical map of the chloroplast genome from the red alga Porphyra yezoensis. The 185 kb circular genome contains ribosomal RNA encoding inverted repeats (6.6 kb), and is divided into small and large singlecopy regions of approxiamtely 16 kb and 156 kb respectively. The Porphyra genome contains several genes not found in higher plant chloroplasts. Genes encoding the pigmented, light-harvesting phycobiliproteins are organized relatively close to one another on the genome, and represent components of a multi-gene family. the phycocyanin biliprotein genes (ppcBA) map in two single-copy regions, suggesting either duplicated genes or a transsplicing mechanism. In contrast to higher plants, the tufA and rbcS genes are chloroplast-encoded in Porphyra, and rbcS is clustered with the rbcL gene, suggesting an operon type of arrangement. The Porphyra chloroplast genome is distinctive, also, in that part of it has sequence homology to plasmid-like DNA molecules which co-isolate with the chloroplast DNA.

Key words

Red-algal chloroplast DNA Phycobiliprotein genes Physical map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akazawa T, Takabe T, Kobayashi H (1984) TIBS 9:380–383Google Scholar
  2. Baldauf SL, Palmer JD (1990) Nature 344:262–265Google Scholar
  3. Boczar BA, Delaney T, Cattolico RA (1989) Proc Natl Acad Sci USA 86:4996–4999Google Scholar
  4. Bryant DA, DeLorimer R, Lambert DH, Dubbs JM, Stirewalt VL, E Stevens Jr S, Porter RD, Tam J, Jay E (1985) Proc Natl Acad Sci USA 82:3242–3246Google Scholar
  5. Cavalier-Smith T (1982) Biol J Linn Soc 17:289–306Google Scholar
  6. Cavalier-Smith T (1987) The simultaneous symbiotic origin of mitochondria, chloroplasts and microbodies. Ann NY Acad Sci 503:55–71Google Scholar
  7. Conley PB, Lemaux PG, Lomax TL, Grossmann A (1986) Proc Natl Acad Sci USA 83:3924–3928Google Scholar
  8. Conley PB, Lemaux PG, Grossman AR (1988) J Mol Biol 199:447–465Google Scholar
  9. Delaney TP (1989) PhD Dissertation, Univ of Washington, USAGoogle Scholar
  10. Douglas SE, Durnford DG (1989) Plant Mol Biol 13:13–20Google Scholar
  11. Ebert C, Tymms MJ, Schweiger HG (1985) Mol Gen Genet 200:187–192Google Scholar
  12. Egelhoff T, Grossman A (1983) Proc Natl Acad Sci USA 80:3339–3343Google Scholar
  13. Feinberg AP, Vogelstein B (1983) Anal Biochem 132:6–13Google Scholar
  14. Gibbs SP (1981) Int Rev Cytol 72:49–99Google Scholar
  15. Goff LJ, Coleman AW (1988) J Phycol 24:357–368Google Scholar
  16. Gray MW, Doolittle WF (1982) Microbiol Reviews 46:1–42Google Scholar
  17. Guillard RRL, Ryther J (1962) Can J Microbiol 8:229–239Google Scholar
  18. Heizmann P, Ravel-Chapuis P, Nigon V (1982) Curr Genet 6:119–122Google Scholar
  19. Kalla SR, Lind LK, Lidholm J, Gustafsson P (1988) J Bacteriol 170:2961–2970Google Scholar
  20. Lemaux PG, Grossman AR (1984) Proc Natl Acad Sci USA 81:4100–4104Google Scholar
  21. Li N, Cattolico RA (1987) Mol Gen Genet 209:343–351Google Scholar
  22. Lomax TL, Conley PB, Schilling J, Grossman A (1987) J Bacteriol 169:2675–2684Google Scholar
  23. Ludwig M, Gibbs SP (1989) J Cell Biol 108:875–884Google Scholar
  24. Marsh JL, Erfle M, Wykes E (1984) Gene 32:481–485Google Scholar
  25. Maniatis T, Fritsch EF, Sambrock J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  26. Palmer JD (1985a) Evolution of chloroplast and mitochondrial DNA in plants and algae. In: R.J. MacIntyre (ed) Molecular Evolutionary Genetics. Plenum Press, New York, pp. 131–240Google Scholar
  27. Palmer JD (1985b) Annu Rev Genet 19:325–354Google Scholar
  28. Palmer JD (1986a) Chloroplast DNA and phylogenetic relationships. In: K.D. Dutta (ed) DNA Systematics, Vol II: Plants. CRC Press Inc., Florida, pp 63–80Google Scholar
  29. Palmer JD (1986b) Methods Enzymol 118:167–187Google Scholar
  30. Rochaix JD, Dron M, Rahire M, Malnoe P (1984) Plant Mol Biol 3:363–370Google Scholar
  31. Steinmuller K, Kaling M, Zetsche K (1983) Planta 159:308–313Google Scholar
  32. Turmel M, Bellamare G, Lee R, Lemieux C (1986) Plant Mol Biol 6:313–319Google Scholar
  33. Valentin K, Zetsche K (1989) Curr Genet 16:203–209Google Scholar
  34. Wasmann CC, Loeffelhardt W, Bohnert HJ (1987) Cyanelles: organization and molecular biology. In: P. Fay and C. Van Baalen (eds.). The Cyanobacteria. Elsevier Science Publishers, pp 303–324Google Scholar
  35. Whatley JM (1981) Annu NY Acad Sci 361:154–165Google Scholar
  36. Whatley JM, Whatley FR (1981) New Phytol 87:233–247Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • M. S. Shivji
    • 1
  1. 1.School of Fisheries, HF-10University of WashingtonSeattleUSA

Personalised recommendations