Photopischer Dominator und Farbkomponenten im menschlichen Elektroretinogramm

  • E. Dodt
  • R. M. Copenhaver
  • R. D. Gunkel


The relative spectral sensitivity of the photopic component of the human electroretinogram was measured for wave lengths between 404 and 672 mμ in a state of moderate light adaptation. Light stimuli at a constant frequency of 32 per second were used to avoid scotopic contamination.

With stimulation of a small central area including the fovea and parafoveal zone, the photopic spectral sensitivity agrees roughly with psychophysical measurements for the red and green portions of the spectrum. However, at shorter wavelength there is a higher sensitivity determined by this method as compared to any available foveal luminosity curves. This blue discrepancy is not apparent when the “electroretinal” spectral sensitivity curves are compared to Wald's peripheral (8°) photopic luminosity curves.

Large-area stimuli which illuminate the retina further peripherally cause an increase in blue sensitivity which is maximal at about 460 mμ and is more pronounced at higher intensities. Nyctalopes show the same increase in blue sensitivity as normals when large-area stimuli are used.

The spectral sensitivity of the photopic component varies between protanopes, protanomalous, and normal subjects, with protanopes showing the greatest loss in sensitivity in the region of the longer wavelength as compared to normals, while the sensitivity of protanomalous subjects fell between the protanopes and normals. The maximum loss of sensitivity in the protanopes in the long wavelength end of the spectrum was at 585 mμ.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E. D.: The electrical response of the human eye. J. Physiol. (Lond.) 104, 84–104 (1945).Google Scholar
  2. Armington, J. C.: A component of the human electroretinogram associated with red color vision. J. Opt. Soc. Amer. 42, 393–401 (1952).Google Scholar
  3. Electrical responses of the light adapted eye. J. Opt. Soc. Amer. 43, 450–456 (1953).Google Scholar
  4. Amplitude of response and relative spectral sensitivity of the human electroretinogram. J. Opt. Soc. Amer. 45, 1058–1064 (1955).Google Scholar
  5. Armington, J. C., and W. R. Biersdorf: Flicker and color adaptation in the human electroretinogram. J. Opt. Soc. Amer. 46, 393–400 (1956).Google Scholar
  6. Best, W., u. K. Bohnen: Über den „off-Effekt“ im Elektroretinogramm des Menschen. Albrecht v. Graefes Arch. Ophthal. 158, 568–577 (1957).Google Scholar
  7. Burian, H. M., and L. Allen: A speculum contact lens electrode for electroretinography. EEG Clin. Neurophysiol. 6, 509–511 (1954).Google Scholar
  8. Coblentz, W. W., and W. B. Emerson: Relative sensitivity of the average eye to light of different colors and some practical applications to radiation problems. Bull. Bureau of Standarts 14, 167–234 (1918/19).Google Scholar
  9. Dodt, E.: Elektroretinographische Untersuchungen zur Analyse des Flimmerphänomens im menschlichen Auge. Ber. dtsch. ophthal. Ges. 57, 242–245 (1951).Google Scholar
  10. Physical factors in the correlation of ERG spectral sensitivity curves with visual pigment. Amer. J. Ophthal. 1958 (im Druck).Google Scholar
  11. Dodt, E., u. V. Elenius: Spektrale Sensitivität einzelner Elemente der Kaninchennetzhaut. Pflügers Arch. ges. Physiol. 262, 301–306 (1956).Google Scholar
  12. Dodt, E., and J. B. Walther: Fluorescence of the crystalline lens and electroretinographic sensitivity determinations. Nature (Lond.) 1958a, 286–287.Google Scholar
  13. Photopic sensitivity mediated by visual purple. Experientia (Basel) 14, 142 (1958b).Google Scholar
  14. Dodt, E., and A. Wirth: Differentation between rods and cones by flicker electroretinography in pigeon and guinea pig. Acta physiol. scand. 30, 80–89 (1953).Google Scholar
  15. Granit, R.: Sensory mechanisms of the retina. Oxford: University Press 1947.Google Scholar
  16. Hecht, S., and Y. Hsia: Colorblind vision I. Luminosity losses in the spectrum for dichromats. J. gen. Physiol. 31, 141–152 (1948).Google Scholar
  17. Johnson, E. P., and T. N. Cornsweet: Electroretinal photopic sensitivity curve. Nature (Lond.) 1954, 614–615.Google Scholar
  18. König, A., u. C. Dieterici: Die Grundempfindungen und ihre Intensitätsverteilung im Spectrum. Sitzungsberichte Kgl. Preuß. Acad. Wiss. Berlin 39, 805–829 (1886).Google Scholar
  19. Le Grand, Y.: Sur la fluorescence du cristalline. Compt. rend. d. séances de l'academ. d. sciences 207, 1128–1130 (1938).Google Scholar
  20. Pitt, F. H. G.: Characteristics of dichromatic vision with an appendix on anomalous trichromatic vision. Great Britain Med. Res. Council. Spec. Rep. Series No. 200 (1935).Google Scholar
  21. Some aspects of anomalous vision. Docum. Ophthalm. 3, 307–317 (1949).Google Scholar
  22. Ranke, G.: Objektive Messung der Lichtzerstreuung in den Augenmedien von Tieraugen. Arbeitsphysiologie 15, 427–447 (1954).Google Scholar
  23. Rushton, W. A. H., and F. W. Campbell: Measurements of Rhodopsin in the living human eye. Nature (Lond.) 1954, 1096.Google Scholar
  24. Human cone pigments. Symposium on visual problems of colour. Teddington, September (1957a).Google Scholar
  25. The lack of red-sensitive pigment in the protanope. Acta physiol. scand. 42, Suppl. 145, 121–122 (1957b).Google Scholar
  26. Schubert, G., u. H. Bornschein: Beitrag zur Analyse des menschlichen Elektroretinogramms. Ophthalmologica (Basel) 123, 396–413 (1952).Google Scholar
  27. Sperling, H. G., and Y. Hsia: Some comparisons among spectral sensitivity data obtained in different retinal locations and with two sizes of foveal stimulus. J. Opt. Soc. Amer. 47, 701–713 (1957).Google Scholar
  28. Talbot, S. A.: Recent concepts of retinal color mechanism. J. Opt. Soc. Amer. 41, 895–918 (1951).Google Scholar
  29. Wadensten, L.: The use of flicker electroretinography in the human eye. Acta Ophthalm. 34, 311–340 (1956).Google Scholar
  30. Wald, G.: Human vision and the spektrum. Science 1945, 653–658.Google Scholar
  31. Walls, G. L., and G. G. Heath: Typical color blindness reinterpreted. Acta Ophthalm 32, 253–297 (1954).Google Scholar
  32. Weale, R.: Colour vision in the peripheral retina. Brit. Med. Bull. 9, 55–60 (1953).Google Scholar
  33. Wright, W. D.: Researches on normal and defective colour vision. London: Kimpton 1946.Google Scholar

Copyright information

© Springer-Verlag 1958

Authors and Affiliations

  • E. Dodt
    • 1
  • R. M. Copenhaver
    • 1
  • R. D. Gunkel
    • 1
  1. 1.U. S. Department of Health, Education, and WelfareOphthalmology Branch, National Institute of Neurological Diseases and Blindness, National Institutes of Health, Public Health ServiceBethesda

Personalised recommendations