Mammalian Genome

, Volume 4, Issue 10, pp 577–584 | Cite as

Characterization and mapping of the human SOX4 gene

  • Christine J. Farr
  • David J. Easty
  • Jiannis Ragoussis
  • Jerome Collignon
  • Robin Lovell-Badge
  • Peter N. Goodfellow
Original Contributions


The SOX genes comprise a large family related by homology to the HMG-box region of the testis-determining gene SRY. We have cloned and sequenced the human SOX4 gene. The open reading frame encodes a 474 amino acid protein, which includes an HMG-box. The non-box sequence is particularly rich in serine residues and has several polyglycine and polyalanine stretches. With somatic cell hybrids, human SOX4 has been mapped to Chromosome (Chr) 6p distal to the MHC region. There is no evidence for clustering of other members of the SOX1,-2, and-3 or SOX4 gene families around the SOX4 locus.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, B.M., Dugast, I., Ercolani, L., Kong, X.F., Giere, L., Nasrin, N. (1992a). Multiple insulin-responsive elements regulate transcription of the GAPDH gene. Adv. Enzyme Regul. 32, 149–59.Google Scholar
  2. Alexander, B.M., Ercolani, L., Kong, X.F., Nasrin, N. (1992b). Identification of a core motif that is recognized by three members of the HMG class of transcriptional regulators: IRE-ABP, SRY, and TCF-1 alpha. J. Cell Biochem. 48, 129–135.Google Scholar
  3. Aviv, H., Leder, R. (1972). Purification of biologically active globin mRNA by chromatography on oligo thymidylic acid cellulose. Proc. Natl. Acad. Sci. USA 69, 1408–1412.Google Scholar
  4. Bennett, D.C., Bridges, K., McKay, I.A. (1985). Clonal separation of mature melanocytes from premelanocytes in a diploid strain: spontaneous and induced pigmentation of premelanocytes. J. Cell Sci. 77, 167–183.Google Scholar
  5. Carr, C.S., Sharp, P.A. (1990). A helix-loop-helix protein related to the immunoglobulin E box-binding proteins. Mol. Cell. Biol. 10, 4384–4388.Google Scholar
  6. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., Rutter, W.J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299.Google Scholar
  7. Denny, P., Swift, S., Brand, N., Dabhade, N., Barton, P., Ashworth, A. (1992a). A conserved family of genes related to the testis determining gene, SRY. Nucleic Acids Res. 20, 2887.Google Scholar
  8. Denny, P., Swift, S., Connor, F., Ashworth, A. (1992b). An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J 11, 3705–3712.Google Scholar
  9. Eisinger, M., Marko, O. (1982). Selective proliferation of normal human melanocytes from premelanocytes in a human diploid strain. Proc. Natl. Acad. Sci. USA 79, 2018–2022.Google Scholar
  10. Falb, D., Maniatis, T. (1992). Drosophila transcriptional repressor protein that binds specifically to negative control elements in fat body enhancers. Mol. Cell. Biol. 12, 4093–4103.Google Scholar
  11. Farr, C.J., Goodfellow, P.N. (1992). Hidden messages in genetic maps. Science 258, 49.Google Scholar
  12. Feinberg, A.P., Vogelstein, V. (1984). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266–267.Google Scholar
  13. Ferrari, S., Harley, V.R., Pontiggia, A., Goodfellow, P.N., Lovell-Badge, R., Bianchi, M.E. (1992). SRY, like HMG1, recognises sharp angles in DNA. EMBO J. 11, 4497–4506.Google Scholar
  14. Giese, K., Cos, J., Grosschedl, R. (1992). The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69, 185–195.Google Scholar
  15. Griffiths, R. (1991). The isolation of conserved DNA sequences related to the human sex-determining region Y gene from the lesser black-backed gull (Larus fuscus). Proc. R. Soc. Lond. Biol. 244, 123–128.Google Scholar
  16. Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Munsterberg, A., Vivian, N., Goodfellow, P., Lovell, B.R. (1990). A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245–250.Google Scholar
  17. Han, K., Levine, M.S., Manley, J.L. (1989). Synergistic activation and repression of transcription by Drosophila homeobox proteins. Cell 56, 573–583.Google Scholar
  18. Harley, V.R., Jackson, D.I., Hextall, P.J., Hawkins, J.R., Berkovitz, G.D., Sockanathan, S., Lovell, B.R., Goodfellow, P.N. (1992). DNA binding activity of recombinant SRY from normal males and XY females. Science 255, 453–456.Google Scholar
  19. He, X., Gerrero, R., Simmons, D.M., Park, R.E., Lin, C.J., Swanson, L.W., Rosenfeld, M.G. (1991). Tst-1, a member of the POU domain gene family, binds the promoter of the gene encoding the cell surface adhesion molecule Po. Mol. Cell. Biol. 11, 1739–1744.Google Scholar
  20. Jantzen, H.-M., Admon, A., Bell, S.P., Tjian, R. (1990). Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344, 830–836.Google Scholar
  21. Kwon, B.S., Haq, A.K., Pomerantz, S.H., Halaban, R. (1987). Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc. Natl. Acad. Sci. USA 84, 7473–7477.Google Scholar
  22. Larin, Z., Monaco, A.P., Lehrach, H. (1991). Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc. Natl. Acad. Sci. USA 88, 4123–4127.Google Scholar
  23. Lee, C.Q., Yun, Y.D., Hoeffler, J.P., Habener, J.F. (1990). Cyclic-AMP-responsive transcriptional activation of CREB-327 involves interdependent phosphorylated subdomains. EMBO J. 9, 4455–4465.Google Scholar
  24. Licht, J.D., Grossel, M.J., Figge, J., Hansen, U.M. (1990). Drosophila Kruppel protein is a transcriptional repressor. Nature 346, 76–79.Google Scholar
  25. Nagarajan, L., Louie, E., Tsujimoto, Y., Ar-Rushdi, A., Huebner, K., Croce, C.M. (1986). Localization of the human pim oncogene (PIM) to a region of chromosome 6 involved in translocations in acute leukemias. Proc. Natl. Acad. Sci. USA 83, 2556–2560.Google Scholar
  26. Nasrin, N., Buggs, C., Kong, X.F., Carnazza, J., Goebl, M., Alexander, B.M. (1991). DNA-binding properties of the product of the testis-determining gene and a related protein. Nature 354, 317–320.Google Scholar
  27. Nicholas, J.F., Dubois, P., Jakob, H., Gaillard, J., Jacob, F. (1973). Teratocarcinome delasouris: differenciation en culture d'une lignee de cellules primitives a potentialites multiples. Ann. Microbiol. 126, 3–22.Google Scholar
  28. O'Mahony, D.J., Smith, S.D., Xie, W., Rothblum, L.I. (1992). Analysis of the phosphorylation, DNA-binding and dimerization properties of the RNA polymerase I transcription factors UBF1 and UBF2. Nucleic Acids Res. 20, 1301–1308.Google Scholar
  29. Omerod, E.J., Everett, C.A., Hart, I.A. (1986). Enhanced experimental metastatic capacity of a human tumour line following treatment with 5-azacytidine. Cancer Res. 46, 884–890.Google Scholar
  30. Ragoussis, R., Senger, G., Mockridge, I., Sanseau, P., Ruddy, S., Dudley, K., Sheer, D., Trowsdale, J. (1992). A testis-expressed Zn finger gene (ZN76) in human 6p21.3 centromeric to the MHC is closely linked to the human homolog of the t-complex gene tep-11. Genomics 14, 673–679.Google Scholar
  31. Rowley, A., Singer, R.A., Johnston, G.C. (1991). CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Mol. Cell. Biol. 11, 5718–5726.Google Scholar
  32. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning: A Labotatory Manual, 2nd ed. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).Google Scholar
  33. Sinclair, A.H., Berta, P., Palmer, M.S., Hawkins, J.R., Griffiths, B.L., Smith, M.J., Foster, J.W., Frischauf, A.M., Lovell, B.R., Goodfellow, P.N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244.Google Scholar
  34. Suzuki, N., Rohdewohld, H., Neuman, T., Gruss, P., Scholer, H.R. (1990). Oct-6: a POU transcription factor expressed in embryonal stem cells and in the developing brain. EMBO J. 9, 3723–3732.Google Scholar
  35. Todd, J.A. (1990). The role of MHC class II genes in Type 1 diabetes. Curr. Top. Microbiol. Immunol. 164, 17–40.Google Scholar
  36. Travis, A., Amsterdam, A., Belanger, C., Grosschedl, R. (1991). LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function. Genes Dev. 5, 880–894.Google Scholar
  37. van de Wetering, M., Oosterwegel, M., Dooijes, D., Clevers, H. (1991). Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J. 10, 123–132.Google Scholar
  38. Waterman, M.L., Fischer, W.H., Jones, K.A. (1991). A thymusspecific member of the HMG protein family regulates the human T cell receptor Cα enhancer. Genes Dev. 5, 656–669.Google Scholar
  39. Zuo, P., Stanojevic, D., Colgan, J., Han, K., Levine, M., Manley, J.L. (1991). Activation and repression of transcription by the gap proteins hunchback and Kruppel in cultured Drosophila cells. Genes Dev. 5, 254–264.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • Christine J. Farr
    • 1
  • David J. Easty
    • 2
  • Jiannis Ragoussis
    • 3
  • Jerome Collignon
    • 4
  • Robin Lovell-Badge
    • 4
  • Peter N. Goodfellow
    • 1
  1. 1.Department of GeneticsUniversity of CambridgeCambridgeUK
  2. 2.Department of AnatomySt. George's Medical SchoolLondonUK
  3. 3.Division of Medical and Molecular Genetics, UMDSGuy's HospitalLondonUK
  4. 4.Laboratory of Eukaryotic Molecular GeneticsMRC National Institute of Medical ResearchLondonUK

Personalised recommendations