Advertisement

Journal of Materials Science

, Volume 31, Issue 13, pp 3523–3533 | Cite as

Multi-phase toughened epoxy with poly(ether sulphone) and carboxyl-terminated butadiene-acrylonitrile rubber

  • Sung Tae Kim
  • Jun Kyung Kim
  • Chul Rim Choe
  • Sung Il Hong
Papers

Abstract

The structure and properties of ternary blends of epoxy with poly(ether sulphone) (PES) and carboxyl-terminated butadiene-acrylonitrile rubber (CTBN) have been investigated. In these blends, the phase separation occurs in two stages: a macrophase separation during mixing and a microphase separation during curing. At low PES compositions, the PES-rich spherical domains are dispersed. With increasing PES composition, a co-continuous structure develops and, eventually, the phases are inverted. Regardless of structure change, the modulus and yield stress changes with composition just follow the simple rule of mixtures. However, the fracture toughness of these blends exhibits a synergistic effect. Among the various compositions, 5∶5 weight ratio of CTBN to PES exhibited the maximum toughness, which was 140% larger than that calculated from the rule of mixtures. The synergism is believed to be due to the bridging by the PES-rich phase followed by a lowering of the yield stress. The lowering of the yield stress can enlarge the process zone size and the amount of plastic dilatation of the matrix.

Keywords

Epoxy Fracture Toughness Process Zone Stress Change Zone Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. G. Potter, “Epoxide Resins” (Springer, New York, 1970).Google Scholar
  2. 2.
    H. Lee and K. Neville, “Handbook of Epoxy Resins” (McGrawhill, New York, 1967).Google Scholar
  3. 3.
    R. A. Pearson and A. F. Yee, J. Mater. Sci. 21 (1986) 2462.CrossRefGoogle Scholar
  4. 4.
    Idem, Ibid. 21 (1986) 2475.CrossRefGoogle Scholar
  5. 5.
    Idem, Ibid. 24 (1989) 2571.CrossRefGoogle Scholar
  6. 6.
    K. Mizutani, ibid. 28 (1993) 2178.CrossRefGoogle Scholar
  7. 7.
    W. D. Bascom, ibid. 16 (1981) 2657.CrossRefGoogle Scholar
  8. 8.
    S. C. Kunz, ibid. 16 (1981) 3141.CrossRefGoogle Scholar
  9. 9.
    R. J. Young and P. W. R. Beaumont, ibid. 12 (1977) 684.CrossRefGoogle Scholar
  10. 10.
    F. F. Lange, Phil. Mag. 22 (1970) 839.CrossRefGoogle Scholar
  11. 11.
    A. G. Evans, J. Mater. Sci. 9 (1974) 1145.CrossRefGoogle Scholar
  12. 12.
    C. B. Bucknall and K. Partridge, Polymer 24 (1983) 639.CrossRefGoogle Scholar
  13. 13.
    Idem, Ibid. 30 (1989) 213.CrossRefGoogle Scholar
  14. 14.
    Zengli Fu and Yishi Sun, Polymer Prepr. 29 (2) (1988) 177.Google Scholar
  15. 15.
    D. J. Hourston and J. M. Lane, Polymer 33 (1992) 1379.CrossRefGoogle Scholar
  16. 16.
    J. K. Kim and R. E. Robertson, J. Mater. Sci. 27 (1992) 161.CrossRefGoogle Scholar
  17. 17.
    A. G. Evans, Z. B. Ahmad, D. G. Gilbert and P. W. R. Beaumont, Acta Metall. 34 (1986) 79.CrossRefGoogle Scholar
  18. 18.
    D. L. Maxwell, R. J. Young and A. J. Kinloch, J. Mater. Sci. Lett. 3 (1984) 9.CrossRefGoogle Scholar
  19. 19.
    A. J. Kinloch, D. I. Maxwell and R. J. Young, J. Mater. Sci. 20 (1985) 4169.CrossRefGoogle Scholar
  20. 20.
    A. K. Smith, A. F. Yee and R. A. Pearson, ANTEC'92, Society of Plastics Engineers 50th Annual Technical Conference, Detroit, May 1992 (1992) p. 2631.Google Scholar
  21. 21.
    R. A. Pearson and A. F. Yee, J. Mater. Sci. 26 (1991) 3828.CrossRefGoogle Scholar
  22. 22.
    T. K. Chen and Y. H. Jan, ibid. 27 (1992) 111.CrossRefGoogle Scholar
  23. 23.
    G. G. Trantina, J. Amer. Ceram. Soc. 60 (1977) 7.Google Scholar
  24. 24.
    H. J. Sue and A. F. Yee, J. Mater. Sci. 24 (1989) 1447.CrossRefGoogle Scholar
  25. 25.
    H. J. Sue and R. A. Pearson, Polym. Prep. (1988) 147.Google Scholar
  26. 26.
    C. B. Bucknall and K. Partridge, Polym. Eng. Sci. 26 (1986) 54.CrossRefGoogle Scholar
  27. 27.
    G. R. Brannock and D. R. Paul, Macromolecules 23 (1990) 5240.CrossRefGoogle Scholar
  28. 28.
    A. Robard and D. Patterson, ibid. 10 (1977) 1021.CrossRefGoogle Scholar
  29. 29.
    P. B. Bowden, in “The Physics of Glassy Polymer”, edited by R. N. Haward (Applied Science Publishers Ltd, London, 1975)Google Scholar
  30. 30.
    J. N. Sultan and F. J. McGarry, Polymer Eng. Sci. 13 (1973) 29.CrossRefGoogle Scholar
  31. 31.
    Y. Huang and A. J. Kinloch, J. Mater. Sci. Lett. 11 (1992) 484.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Sung Tae Kim
    • 1
  • Jun Kyung Kim
    • 1
  • Chul Rim Choe
    • 1
  • Sung Il Hong
    • 2
  1. 1.Division of PolymersKorea Institute of Science and TechnologySeoulKorea
  2. 2.Department of Fiber and Polymer ScienceSeoul National UniversitySeoulKorea

Personalised recommendations