Journal of Materials Science

, Volume 31, Issue 13, pp 3501–3506 | Cite as

Crack initiation in laminated metal-intermetallic composites

  • J. Rawers
  • K. Perry


Several mechanisms have been proposed to describe crack initiation and propagation in ductile-brittle composites. This experimental study shows that the failure of metal intermetallic (metal-aluminides) composites was initiated by cracking initiation in the intermetallic layers. For metal layers that allowed shear deformation, crack initiation in adjacent intermetallic layers resulted from shear bands propagating from a crack tip in the intermetallic layer through the metal layer and producing stress concentration points at the interfaces of adjacent intermetallic layers. For metal layers that did not support shear deformation, crack initiation in the intermetallic layers resulted from the continued build up of stresses within the intermetallic layers, resulting in a relatively uniform distribution of cracks within the individual intermetallic layers. Prior to failure, lateral constraints produce lateral cracks in the intermetallic layers. The final fracture features of both failure mechanisms were similar for both metal-intermetallic systems.


Polymer Uniform Distribution Failure Mechanism Stress Concentration Crack Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. F. Ashby, F. L. Blunt and M. Bannister, Acta Matall. Mater. 37 (1989) 1847.CrossRefGoogle Scholar
  2. 2.
    H. E. Deve, A. G. Evans, G. R. Odette, R. Mehrabian, M. L. Emilliani and R. J. Hecht, Acta Metall. 38 (1990) 1491.CrossRefGoogle Scholar
  3. 3.
    H. E. Deve and M. J. Malloney, ibid. 39 (1991) 2275.CrossRefGoogle Scholar
  4. 4.
    L. Sigl, P. A. Mataga, B. J. Dalgleish, R. M. McMeeking and A. G. Evans, Acta Metall Mater. 36 (1988) 945.CrossRefGoogle Scholar
  5. 5.
    M. F. Bannister and M. F. Ashby, Acta. Metall. 39 (1991) 2575.CrossRefGoogle Scholar
  6. 6.
    H. C. Cao and A. G. Evans, ibid. 39 (1991) 2997.CrossRefGoogle Scholar
  7. 7.
    M. C. Shaw, D. B. Marschall, M. S. Dadkhah and A. G. Evans, ibid. 41 (1993) 3311.CrossRefGoogle Scholar
  8. 8.
    J. C. Rawers, J. S. Hansen, D. E. Alman and J. A. Hawk, J. Mater. Sci. Lett. 13 (1994) 1357.CrossRefGoogle Scholar
  9. 9.
    D. E. Alman, J. A. Hawk, A. V. Petty Jr. and J. C. Rawers, JOM 46 (1994) 31.CrossRefGoogle Scholar
  10. 10.
    D. E. Alman, J. C. Rawers and J. A. Hawk, Met. Trans. A 26A (1995) 589.CrossRefGoogle Scholar
  11. 11.
    K. E. Perry Jr., Optics and Lasers in Engineering (In press).Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • J. Rawers
    • 1
  • K. Perry
    • 2
  1. 1.US Bureau of MinesAlbany Research CenterAlbanyUSA
  2. 2.Lockheed Idaho Technologies CompanyIdaho FallsUSA

Personalised recommendations