Journal of Materials Science

, Volume 31, Issue 13, pp 3497–3500 | Cite as

Preparation of nanosized titania powder via the controlled hydrolysis of titanium alkoxide

  • Jinyuan Chen
  • Lian Gao
  • Junghua Huang
  • Dongsheng Yan


By controlling the hydrolysis of titanium butoxide, followed with or without an ethanol washing process, the preparation of nanoscale titania powder was studied in detail. The characteristics of different powders produced by the direct precipitation (without an ethanol wash) and ethanol wash processes were studied by X-ray diffraction, transmission electron microscopy, BET, thermogravimetry and differential thermal analysis techniques. By comparison, it was found that both the direct precipitation and ethanol wash methods can obtain slightly agglomerated nanoscale titania powders of less than 15 nm, but the ethanol wash can further reduce the agglomeration. The particle sizes of titania powders can be modified while still retaining the anatase structure.


Transmission Electron Microscopy Agglomeration Differential Thermal Analysis Alkoxide Titania Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Haro-Poniatowski, R. Rodriguez-Talavera, M. de la Cruz Heredia, O. Cano-Corona and R. Arroyo-Murillo, J. Mater. Res. 9 (1994) 2102.CrossRefGoogle Scholar
  2. 2.
    Richard W. Siegel, Mater. Sci. Eng. B19 (1993) 37.CrossRefGoogle Scholar
  3. 3.
    Abdul M. Azad, Lora B. Younkman, Sheikh A. Akbar and Mohammad A. Alim, J. Am. Ceram. Soc. 77 (1994) 481.CrossRefGoogle Scholar
  4. 4.
    Zongquan Li, S. Ramasamy, H. Haha and R. W. Siegel, Mater. Lett. 6 (1988) 195.CrossRefGoogle Scholar
  5. 5.
    J. E. Epperson, R. W. Siegel, J. W. White, T. E. Klippert, A. Narayanasamy, J. A. Eastman and F. Trouw, Mater. Res. Soc. Symp. Proc. 132 (1989) 15.CrossRefGoogle Scholar
  6. 6.
    R. W. Siegel and J. A. Eastman, ibid. 132 (1989) 3.CrossRefGoogle Scholar
  7. 7.
    Douglas C. Hague and Merrilea J. Mayo, J. Am. Ceram. Soc. 77 (1994) 1957.CrossRefGoogle Scholar
  8. 8.
    Anne Bagley Hardy, Wendell E. Rhine and H. Kent Bowen, ibid. 76 (1993) 97.CrossRefGoogle Scholar
  9. 9.
    Eric A. Barringer and H. Kent Bowen, Commun. Am. Ceram. Soc. Vol. 1 December (1982) 199.Google Scholar
  10. 10.
    M. S. Kaliszewski and A. H. Heuer, J. Am. Ceram. Soc. 73 (1990) 1504.CrossRefGoogle Scholar
  11. 11.
    Haibo Qiu, Lian Gao, De Chu Feng, Jingkun Guo and Dongsheng Yan, J. Inorg. Mater. 9(3) (1994) 365 (in Chinese).Google Scholar
  12. 12.
    W. Bauer and G. Tomandl, Ceram. Int. 20 (1994) 189.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Jinyuan Chen
    • 1
  • Lian Gao
    • 1
  • Junghua Huang
    • 1
  • Dongsheng Yan
    • 1
  1. 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations