Advertisement

Journal of Materials Science

, Volume 31, Issue 13, pp 3435–3440 | Cite as

Computer simulation and infrared investigation on a novolac formaldehyde phenolic resin

  • B. L. Schürmann
  • L. Vogel
Papers

Abstract

Atomistic molecular dynamics computer simulations and infrared experiments have been performed to characterize the solid state of a formaldehyde phenolic resin. The infrared measurement of Novolak 1940 H qualitatively proves the existence of hydrogen bonding. Upon heating, the band of the free O-H vibrations increased at the cost of the associated band. The simulation of a system of purely ortho-substituted chains in comparison to the ensemble of randomly ortho-para substituted chains, showed that the amount of hydrogen bonding, which in both cases mainly acts intramolecularly, is much smaller in the latter system due to the larger separation of the polar OH groups.

Keywords

Polymer Hydrogen Bonding Solid State Molecular Dynamic Computer Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. N. Theodorou and U. W. Suter, Macromolecules 18 (1985) 1467.CrossRefGoogle Scholar
  2. 2.
    Idem, ibid. 19 (1986) 139.CrossRefGoogle Scholar
  3. 3.
    A. A. Gusev, S. Arizzi and U. W. Suter, J. Chem. Phys. 99 (1993) 2221.CrossRefGoogle Scholar
  4. 4.
    A. A. Gusev and U. W. Suter, ibid. 99 (1993) 2228.CrossRefGoogle Scholar
  5. 5.
    G. L. Brode, in “Encyclopedia of Chemical Technology”, edited by Kirk-Othmer (Wiley, New York, 1982) pp. 384–416.Google Scholar
  6. 6.
    T. Cairns and G. Eglington, Nature 196 (1962) 535.CrossRefGoogle Scholar
  7. 7.
    Idem, J. Chem. Soc. (1965) 5906.Google Scholar
  8. 8.
    Z. Katovic and M. Stefanic, Ind. Eng. Chem. Prod. Res. Dev. 24 (1985) 179.CrossRefGoogle Scholar
  9. 9.
    C. Holland, W. Stark and G. Hinrichsen, Acta Polym. 46 (1995) 64.CrossRefGoogle Scholar
  10. 10.
    Discover version 3.2, Biosym Technologies Inc., San Diego, CA (1994).Google Scholar
  11. 11.
    H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. Dinola and J. R. Haak, J. Chem. Phys. 81 (1984) 3684.CrossRefGoogle Scholar
  12. 12.
    H. Sun, R. O. Watts and O. Buck, J. Chem. Phys. 96 (1992) 1810.CrossRefGoogle Scholar
  13. 13.
    F. L. Jobiason, K. Houglum and K. Shanafelt, ACS Polym. Preprints 24 (1983) 181.Google Scholar
  14. 14.
    T. P. Young, E. M. Pearce, T. K. Kwei and N. L. Yang, Macromolecules 22 (1989) 1813.CrossRefGoogle Scholar
  15. 15.
    G. Socrates, “Infrared Characteristic Group Frequencies” (Wiley, New York, 1980).Google Scholar
  16. 16.
    C. Zetta, A. De Marco, G. Casiraghi, M. Cornia and R. Kaptein, Macromolecules 18 (1985) 1095.CrossRefGoogle Scholar
  17. 17.
    C. J. Serman, P. C. Painter and M. M. Coleman, Polymer 32 (1991) 1049.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • B. L. Schürmann
    • 1
  • L. Vogel
    • 1
  1. 1.Federal Institute of Materials Research and Testing (BAM)BerlinGermany

Personalised recommendations