Advertisement

Journal of Materials Science

, Volume 30, Issue 16, pp 4195–4198 | Cite as

Defect annealing of neutron-irradiated silicon crystals

  • Meng Xiang-Ti
  • Zuo Kai-Fen
Article
  • 49 Downloads

Abstract

Doppler broadening positron annihilation spectroscopy has been used to investigate the effects of neutron integrated flux and hydrogen on annealing behaviour of defects in silicon crystals. The concentration of neutron radiation defects was estimated, activation energy of some annealing stages was calculated and some specific annealing phenomena were explained.

Keywords

Hydrogen Radiation Polymer Spectroscopy Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. B. Gossick, J. Appl Phys. 30 (1959) 1214.CrossRefGoogle Scholar
  2. 2.
    L. J. Cheng, J. C. Corelli, J. W. Corbett and G. D. Watkins, Phys. Rev. 152 (1966) 761.CrossRefGoogle Scholar
  3. 3.
    H. J. Stein, Phys. Rev. Lett. 43 (1979) 159.CrossRefGoogle Scholar
  4. 4.
    X. T. Meng, G. G. Qin, Y. C. Du and Y. F. Zhang, J. Appl. Phys. 63 (1988) 5606.CrossRefGoogle Scholar
  5. 5.
    J. M. Meese, in “Neutron transmutation doping in semiconductors” Edited by J. M. Meese (Plenum, New York, 1978) p. 1.Google Scholar
  6. 6.
    B. Nielsen, O. W. Holland, T. C. Leung and K. G. Lynn, J. Appl. Phys. 74 (1993) 1636.CrossRefGoogle Scholar
  7. 7.
    P. Mascher, S. Dannefaer and D. Kerr, Phys, Rev. B 40 (1989) 11764.CrossRefGoogle Scholar
  8. 8.
    J. Makinen, E. Punkka, A. Vehanen, P. Hautojärvi, J. Keinonen, M. Hautala and E. Rauhala, J. Appl. Phys. 67 (1990) 990.CrossRefGoogle Scholar
  9. 9.
    D. Helmreich et al., in “Semiconductor silicon”, J. Electrochem. Soc., PV-77-2 (1977) 626.Google Scholar
  10. 10.
    L. S. Smirnov, “A survey of semiconductor radiation technology (Mir Publishers, Moscow, 1983) p. 18.Google Scholar
  11. 11.
    M. Kwete, D. Segers, M. Dorikens, L. Dorikens-Vanpraet and P. Clauws, Phys. Status Solidi A 122 (1990) 129.CrossRefGoogle Scholar
  12. 12.
    I. V. Antonova, A. V. Vasil'ev, V. I. Panov and S. Sharmeev, Sov. Phys. Semicond. 23 (1989) 671.Google Scholar
  13. 13.
    G. D. Watkins, J. R. Troxell and A. P. Chatterjee, in “Def. and Rad. Eff. in Semicond.” Proceedings of the International Conference, Nice, France, 1978 (Institute of Physics, London, 1979) p. 16.Google Scholar
  14. 14.
    S. N. Ershov, V. A. Pantellev, S. N. Nagomykh and V. V. Chernyakhovskii, Sov. Semicond. Phys. 19 (1977) 187.Google Scholar
  15. 15.
    A. K. Pustovoit, R. F. Kovopleva, A. I. Kupchishin and K. M. Mukashev, Ibid. 3 (1989) 160.Google Scholar
  16. 16.
    L. J. Cheng, C. K. Yeh, S. I. Ma and C. S. Su, Phys. Rev. B 8 (1973) 2880.CrossRefGoogle Scholar
  17. 17.
    S. Makinen, H. Rajainmaki and S. Linderoth, Ibid. 42 (1990) 11166.CrossRefGoogle Scholar
  18. 18.
    A. Van Wieringen and N. Warmoltz, Physica 22 (1956) 849.CrossRefGoogle Scholar
  19. 19.
    X. T. Meng, G. T. Du and K. M. Liu, Nucl Sci. Eng. 2 (1982) 172.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Meng Xiang-Ti
    • 1
  • Zuo Kai-Fen
    • 1
  1. 1.Institute of Nuclear Energy TechnologyTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations