Journal of Materials Science

, Volume 30, Issue 16, pp 4009–4013 | Cite as

Microstructural investigation of quartz submitted to ultra-short shock loading

  • P. Cordier
  • J. C. Doukhan
  • A. Migault
  • J. P. Romain


A high-energy pulsed laser was used to induce very short (2 ns) pressure pulses in quartz single crystals. The microstructure of recovered specimens was characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. Whatever the peak pressures (20–90 GPa), the shocked materials showed no shock defects (amorphous lamellae, Brazil twins, etc.). The microstructure was dominated by fracturing. The present study thus suggests that for very short pulse durations, quartz can be loaded at pressures well above the Hugoniot elastic limit without undergoing solid-state amorphization. The behaviour of quartz is purely elastic-brittle.


Microstructure Quartz Transmission Electron Microscopy Pulse Laser Optical Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Stöffler and F. Langenhorst, Meteoritics 29 (1994) 155.Google Scholar
  2. 2.
    Th. Löwer and R. Sigel, Contr. Plasma Phys. 33 (1993) 355.Google Scholar
  3. 3.
    O. Goltrant, H. Leroux, J. C. Doukhan and P. Cordier, Phys. Earth Planet Interiors 74 (1992) 219.Google Scholar
  4. 4.
    A. J. Gratz, J. Non-Cryst. Solids 67 (1984) 543.Google Scholar
  5. 5.
    A. J. Gratz, J. Tyburczy, J. Christie, T. Ahrens and P. Pongratz, Phys. Chem. Mineral. 16 (1988) 221.Google Scholar
  6. 6.
    A. J. Gratz, W. J. Nellis, J. M. Christie, W. Brocious, J. Swegle and P. Cordier, ibid. 19 (1992) 267.Google Scholar
  7. 7.
    A. R. Huffmann, J. M. Brown, N. L. Carter and W. U. Reimold, J. Geophys. Res. 98 (1993) 22171.Google Scholar
  8. 8.
    F. Langenhorst, A. Deutsch, D. Stöffler and U. Hornemann, Nature 356 (1992) 507.Google Scholar
  9. 9.
    F. Langenhorst and A. Deutsch, Earth Planet. Sci. Lett. 125 (1994) 407.Google Scholar
  10. 10.
    A. Ng, B. K. Godwal, J. Waterman, L. Dasilva, N. W. Ashcroft and R. Jeanloz, Phys. Rev. B 44 (1991) 4872.Google Scholar
  11. 11.
    B. Stevering and P. Dudel, J. Appl. Phys. 47 (1976) 1940.Google Scholar
  12. 12.
    C. R. Philipps Jr, T. P. Turner, R. F. Harison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi and T.R. King, ibid. 64 (1988) 1023.Google Scholar
  13. 13.
    R. Fabbro, J. Fournier, P. Ballard, D. Devaux and J. Virmont, ibid. 68 (1990) 775.Google Scholar
  14. 14.
    J. Grun, R. Decoste, B. H. Ripin and J. Gardner, Appl Phys. Lett. 39 (1981) 545.Google Scholar
  15. 15.
    F. Cottet and M. Boustie, J Appl. Phys. 66 (1989) 4067.Google Scholar
  16. 16.
    J. W. Swegle, ibid. 68 (1990) 1563.Google Scholar
  17. 17.
    B. R. Lawn and R. Wilshaw, J. Mater. Sci. 10 (1975) 1049.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • P. Cordier
    • 1
  • J. C. Doukhan
    • 1
  • A. Migault
    • 2
  • J. P. Romain
    • 2
  1. 1.Laboratoire de Structure et Propriétés de l'Etat Solide-UA CNRS 234Université des Sciences et Technologies de LilleVilleneuve d'Ascq CedexFrance
  2. 2.Laboratoire d'Energétique et de Détonique-UA CNRS 193Ecole Nationale Supérieure de Mécanique et d'AérotechniqueFuturoscope CedexFrance

Personalised recommendations