Biological Cybernetics

, Volume 24, Issue 2, pp 85–101 | Cite as

Elementary movement detectors in an insect visual system

  • E. Buchner


In the theoretical part of the present work the input-output relation for a multi-input system is developed into a functional power series. This is formally equivalent to a decomposition of the system into a sum of all possible combinations of 1-, 2-, 3-... input subsystems. The average response of the system to a uniformly moving patern is known to be a Fourier series with respect to spatial frequency. The coefficients of the series are linear combinations of the “weights” by which different subsystems contribute to the total reaction. If a system can be shown to have essential nonlinearities of no higher than second order it is possible to calculate, from a Fourier analysis of the average movement response, the “weight” by which the nonlinear interaction between any two input elements contributes to the total reaction. This interaction is termed “elementary movement detector”. By the analysis presented here the arrangement of the elementary movement detectors may be determined for a two-dimensional array of input elements and the strength of their contributions to the total movement reaction may be calculated. Special experimental methods have been developed which allow one to apply this analysis to the visual system of the fruitfly Drosophila. The preliminary data presented show that the direction sensitive optomotor response of Drosophila can be attributed predominantly to the contributions from two “elementary movement detectors” which interconnect neighbouring visual elements. The detectors are oriented in the hexagonal array of the compound eye at +30° and at-30° with respect to the horizontal line of symmetry. A weak contribution from a detector between neighbouring elements along the horizontal line of symmetry is suggested by the present data. In the course of the analysis the contrast transfer properties of the compound eye are characterized.


Movement Response Neighbouring Element Total Movement Hexagonal Array Visual Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barlow, H.B., Levick, W.R.: The mechanism of diretionally sensitive units in rabbits retina. J. Physiol. (Lond.) 178, 477–504 (1965)Google Scholar
  2. Buchner, E.: Bewegungsperzeption in einem visuellen System mit gerastertem Eingang. Dissertaion, Eberhard-Karls-Universität Tübingen (1974)Google Scholar
  3. Eckert, H.: Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L. Kybernetik 14, 1–23 (1973)Google Scholar
  4. Franceschini, N.: Sur le traitement optique de l'information visuelle dans l'œil composé de la drosophile. Thèse 1972 C.N.R.S. (Paris) No. A.O. 3802 (1972a)Google Scholar
  5. Franceschini, N.: Pupil and pseudopupil in the compound eye of Drosophila. In: Information processing in the visual system of arthropods. Ed.: Wehner, R, Berlin-Heidelberg-New York: Springer 1972bGoogle Scholar
  6. Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Photoreceptor optics. Eds.: Snyder, A. W., Menzel, R., Berlin-Heidelberg-New York: Springer 1975Google Scholar
  7. Gavel, L. v.: Die “kritische Streifenbreite” als Maß der Sehschärfe bei Drosophila melanoaster. Z. vergl. Physiol. 27, 80–135 (1939)Google Scholar
  8. Geiger, G., Poggio, T.: The orientation of flies towards visual patterns: On the search for the underlying functional interactions. Biol. Cybernetics 19, 39–54 (1975)Google Scholar
  9. Götz, K.G.: Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964)Google Scholar
  10. Götz, K. G.: Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2, 215–221 (1965)Google Scholar
  11. Götz, K.G.: Flight control in Drosophila by visual perception of motion. Kybernetik 4, 199–208 (1968)Google Scholar
  12. Götz, K.G.: Movement discrimination in insects. In: S.I.F. Course XLIII. Ed.: Reichardt, W. London, New York: Academic Press 1969Google Scholar
  13. Götz, K.G.: The optomotor equilibrium of the Drosophila navigation system. J. comp. Physiol. 99, 187–210 (1975)Google Scholar
  14. Götz, K.G.: Hirnforschung am Navigationssystem der Fliegen. Naturwissenschaften 62, 468–475 (1975)Google Scholar
  15. Götz, K.G., Wenking, H.: Visual control of locomotion in the walking fruitfly Drosophila. J. comp. Physiol. 85, 235–266 (1973)Google Scholar
  16. Hassenstein, B.: Ommatidienraster und afferente Bewegungsintegration. Z. vergl. Physiol. 33, 301–326 (1951)Google Scholar
  17. Hassenstein, B.: Optokinetische Wirksakeit bewegter periodischer Muster. Z. Naturforsch. 14 b, 659–674 (1959)Google Scholar
  18. Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch 11b, 513–524 (1956)Google Scholar
  19. Heisenberg, M.: Comparative behavioural studies of two visual mutants of Drosophila. J. comp. Physio. 80, 119–136 (1972)Google Scholar
  20. Heisenberg, M., Götz, K.G.: The use of mutations for the partial degradation of vision in Drosophila melanogaser. J. comp. Physiol. 98, 217–241 (1975)Google Scholar
  21. Hengsteinberg, R., Götz, K.G.: Der Einfluß des Schirmpigmentgehalts auf die Helligkeits- und Kontrastwahrehmung bei Drosophila-Augenmutanten. Kybernetik 3, 276–285 (1967)Google Scholar
  22. Hille, E., Phillips, R.: Functional analysis and semi-groups. New York: Amer. Math. Soc. 1957Google Scholar
  23. Kien, J.: Neuronal mechanisms subserving directional selectivity in the locust optomotor system. J. comp. Physiol. 102, 337–355 (1975)Google Scholar
  24. Kirschfeld, K.: The visual system of Musca: Studies on optics, structure and function. In: Information processing in the visual system of arthropods. Ed.: Wehner R. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  25. Kirschfeld, K.: Das neurale Superpositionsauge. In: Linduer, M. (Ed.): Fortschr. Zool. 21, 229–257 (1973)Google Scholar
  26. Kirschfeld, K., Lutz, B.: Lateral inhibition in the compound eye of the fly, Musca. Z. Naturforsch. 29c, 95–97 (1974)Google Scholar
  27. Kunze, P.: Untersuchung de Bewegungssehens fixiert fliegender Bienen. Z. vergl. Physiol. 44, 656–684 (1961)Google Scholar
  28. Land, M.F., Collett, T.S.: Chasing behaviour of houseflies (Fannia canicularis). J. comp. Physiol. 89, 331–357 (1974)Google Scholar
  29. Marmarelis, P., McCann, G.D.: Development and application of white-noise modeling techniques for studies of insect visual nervous system. Kybernetik 12, 74–90 (1973)Google Scholar
  30. McCann, G.D., MacGinitie, G.F.: Optomotor response studies of insect vision. Proc. roy. Soc., Ser. B. 163, 369–401 (1965)Google Scholar
  31. McCann, G.D.: Nonlinear identification theory models for successive stages of visual nervous systems of flies. J. Neurophysiol. 37, 869–895 (1974)Google Scholar
  32. Palm, G., Poggio, T.: The “Voltera” representation and the Wiener expansion: validity and pitfalls. In preparation (1976)Google Scholar
  33. Pick, B.: Visual flicker induces orientation behaviour in the fly Musca. Z. Naturforsch. 29c, 310–312 (1974)Google Scholar
  34. Pick, B.: Visual pattern discrimination as an element of the fly's orientation behaviour. Biol. Cybernetics 23, 171–180 (1976)Google Scholar
  35. Poggio, T.: Processing of visual information in flies: from a phenomenological model towards the nervous mechanisms. First Symp. It. Soc. of Biophysics. Vecli, A., Ed., Parma: Tipolito 1974aGoogle Scholar
  36. Poggio, T.: Stochastic linearization, central limit theorem and linearity in (nervous) “black boxes”. III. Symp. Biophys. S. Marino (1974b)Google Scholar
  37. Poggio, T., Reichardt, W.: Considerations on models of movement detection. Kybernetik 13, 223–227 (1973a)Google Scholar
  38. Poggio, T., Reichardt, W.: A theory of the patern induced flight orientation of the fly Musca domestica. Kybernetik 12, 185–203 (1973b)Google Scholar
  39. Poggio, T., Reichardt, W.: Visual control of orientation behaviour in the fly. Part II: Towards the underlying neural interactions. Quart. Rev. Biophys. (in press) (1976)Google Scholar
  40. Reichardt, W.: Autokorrelations-Auswertung als Funktionsprinzip des Zentralneryensystems Z. Naturforsch. 12b, 448–457 (1957)Google Scholar
  41. Reichardt, W.: Musterinduzierte Flugorientierung. Verhaltensversuche an der Fliege Musca domestica. Naturwissenschaften 60, 122–138 (1973)Google Scholar
  42. Reichardt, W., Varjú, D.: Übertragungseigenschaften im Auswertensystem für das Bewegungssehen. Z. Naturforsch. 14b, 674–689 (1959)Google Scholar
  43. Reichardt, W., Poggio, T.: A theory of the pattern induced flight orientation of the fly Musca domestica II. Biol. Cybernetics 18, 69–80 (1975)Google Scholar
  44. Reichardt, W., Poggio, T.: Visual control of behaviour in the fly. Part I: A quantitative analysis. Quart. Rev. Biophys. (in press) (1976)Google Scholar
  45. Scholes, J.: The electrical responses of the retinal receptors and the lamina in the visual system of the fly Musca. Kybernetik 6, 149–162 (1969)Google Scholar
  46. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37, 10 (1949)Google Scholar
  47. Thorson, J.: Small signl analysis of a visual reflex in the locust I, II. Kybernetik 3, 41–66 (1966a, b)Google Scholar
  48. Varjú, D.: Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster. Z. Naturforsch. 14b, 724–735 (1959)Google Scholar
  49. Varjú, D., Reichardt, W.: Übertragungseigenschaften im Auswertesystem für das Bewegungssehen II. Z. Naturforsch. 22b, 1343–1351 (1967)Google Scholar
  50. Virsik, R., Reichardt, W.: Tracking of moving objects by the fly Musca domestica. Naturwissenschaften 61, 132–133 (1974)Google Scholar
  51. Wehrhahn, C., Reichardt, W.: Visually induced height orientation of the fly Musca domestica. Biol. Cybernetics 20, 37–50 (1975)Google Scholar
  52. Zettler, F., Järvilehto, M.: Lateral inhibition in an insect eye. Z. vergl. Physiol. 76, 233–244 (1972)Google Scholar
  53. Zimmermann, G.: Der Einfluß stehender und bewegter Musteranteile auf die optomotorische Reaktion der Fliege Drosophila. Dissertation Eberhard-Karls-Universität Tübingen (1973)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • E. Buchner
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations