Mammalian Genome

, Volume 4, Issue 12, pp 695–703 | Cite as

Concerted evolution in the GAPDH family of retrotransposed pseudogenes

  • P. Garcia-Meunier
  • M. Etienne-Julan
  • Ph. Fort
  • M. Piechaczyk
  • F. Bonhomme
Original Contributions


In murine rodents the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) multigene family includes more than 300 retroprocessed pseudogenes. Its single functional gene encodes GAPDH, an enzyme of glycolysis. Because of its manageable size, this family is a good model for the study of genome cohesion and evolution. By sequence comparison of several GAPDH pseudogenes in Rattus norvegicus and Mus musculus, we have obtained evidence that (i) the GAPDH family still generates new pseudogenes; we note in each species the beginning of a process of species-specific evolution since the pseudogenes of one genus on average cluster more with one another than they do with those of the other genus, and (ii) the GAPDH family contains diversified subfamilies. These findings suggest a certain level of transcription and transposition of the pseudogenes independent of the functional gene which may result from various mechanisms. The homogenization we observe may be due to the pseudogenes themselves (concerted evolution in a strict sense), which explains the occurrence of long-term homogenization of old sequences and subfamily groupings.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Catzeflis, F.M., Sheldon, F.H., Ahlquist, J.E., Sibley, C.G. (1987). DNA-DNA hybridation evidence of the rapid rate of muroid rodent DNA evolution. Mol. Biol. Evol. 4, 242–253.Google Scholar
  2. Catzeflis, F.M., Nevo, E., Ahlquist, J.E., Sibley, C.G. (1989). Relationships of the chromosomal species in the eurasian mole rats of the Spalax ehrenbergi group as determined by DNA-DNA hybridization, and an estimate of the Spalacid-Murid divergence time. J. Mol. Evol. 29, 223–232.Google Scholar
  3. Coen, E., Strachan, T., Brown, S., Dover, G. (1983). On the limited independence of chromosome evolution. Kew Chromosome Conference II, George Allen & Unwin.Google Scholar
  4. Dover, G. (1982). Molecular drive: a cohesive mode of species evolution. Nature 299, 111–117.Google Scholar
  5. Dover, G. (1986). Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet. 159–164.Google Scholar
  6. Dover, G. (1987). DNA turnover of the molecular clock. J. Mol. Evol. 26, 47–58.Google Scholar
  7. Dover, G. (1988). Evolving the improbable. Trends Ecol. Evol. 3, no. 3, 81–84.Google Scholar
  8. Dover, G. Slips, strings and species, Trends Genet. 5, no. 4, 1989.Google Scholar
  9. Dover, G., Coen E. (1981). Springcleaning ribosomal DNA: a model for multigene evolution? Nature 290, 731–732.Google Scholar
  10. ElSabrouty, S., Blanchard, J.M., Marty, L., Jeanteur, P., Piechaczyk, M. (1989). The Muridae glyceraldehyde 3-phosphate deshydrogenase family. J. Mol. Evol. 29, 212–222.Google Scholar
  11. Fort, P., Marty, L., Piechaczyk, M., Riad-El Sabrouty, S., Dani, C., Jeanteur, P., Blanchard, J.M. (1985). Various rat adult tissues express only one major mRNA species from the glyceraldehyde 3-phosphate deshydrogenase multigenic family. Nucleic Acids Res. 13, 1431–1442.Google Scholar
  12. Fukasawa, K., Tanimura, M., Sakai, I., Sharief, F., Chung, F-Z., Li, S. (1987). Molecular nature of spontaneous mutations in mouse lactate deshydrogenase-A processed pseudogenes. Genetics 115, 177–184.Google Scholar
  13. Hanauer, A., Mandel, J.L. (1984). The glyceraldehyde 3-phosphate deshydrogenase gene family: structure of a human cDNA and of an X chromosome linked pseudogene; amazing complexity of the gene family in mouse. EMBO J. 3, 2627–2633.Google Scholar
  14. Jubier-Maurin, V., Dod, B., Bellis, M., Piechaczyk, M., Roizes, G. (1985). Comparative study of the L1 family in the genus Mus: possible role of retroposition and conversion events in its concerted evolution. J. Mol. Biol. 184, 547–564.Google Scholar
  15. Kricker, M.C., Drake, J.W., Radman, M. (1992). Duplication targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes. Proc. Natl. Acad. Sci. USA 89, 1075–1079.Google Scholar
  16. Kunkel, T.A., Bebenk, K. (1988). Recent studies of the fidelity of DNA synthesis. Biochim. Biophys. Acta 951, 1.Google Scholar
  17. Loeb, L.A., Reyland, M.E. (1987). Fidelity of DNA synthesis. In Nucleic Acids and Molecular Biology, vol. 1. Eckstein, F., Lilley, D., eds. (Berlin: Springer Verlag), p. 157.Google Scholar
  18. Martin, S., Volida, C., Hardies, S., Edgell, M., Hutchison, C. (1985). Tempo and mode of concerted evolution in the L1 repeat family on mice. Mol. Biol. Evol. 2, 127–140.Google Scholar
  19. Mazin, A.L., Vaniushin, B.F. (1987). The loss of dinucleotides CpG from DNA. IV. Methylation and divergence of genes and pseudogenes of small nuclear RNA. Mol. Biol. (Mosk) 21, 1099–1109.Google Scholar
  20. Miyata, T., Yasunaga, T. (1981). Rapidly evolving mouse α-globin related pseudogene and its evolutionary history. Proc. Natl. Acad. Sci. USA 78, 450–453.Google Scholar
  21. Nevo, E., Piechaczyk, M. (1989). Deshydrogenase multigene family of mole rat: evolutionary and phylogenetic patterns. Mammalia 53, 296–300.Google Scholar
  22. Piechaczyk, M., Blanchard, J.M., Riad El Sabrouty, D.C., Marty, L., Jeanteur, P. (1984). Unusual high number of glyceraldehyde 3-phosphate deshydrogenase related sequences in mouse and rat genomes. Nature 312, 469–471.Google Scholar
  23. Sabath, D., Broome, H.E., Prystowsky, M.B. (1990). GAPD mRNA is a major interleukine 2-induced transcript in a cloned T helper lymphocyte. Gene 91, 185–191.Google Scholar
  24. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning, a Laboratory Manual, 2nd ed. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).Google Scholar
  25. Sanger, F., Nicklen, S., Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463.Google Scholar
  26. She, J.X., Bonhomme, F., Boursot, P., Thaler, L., Catzeflis, F.M. (1991). Molecular phylogenies in the genus Mus: comparative analysis of electrophoretic, scnDNA hybridization and mtDNA RFLP data. Biol. J. Linnean Soc. 41, 83–103.Google Scholar
  27. Sved, J., Bird, A. (1990). The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc. Natl. Acad. Sci. USA 87, 4692–4696.Google Scholar
  28. Tso, J.Y., Sun, X.H., Kao, T.H., Reece, K.S., Wu, R. (1985). Isolation and deshydrogenase cDNAs: genomic complexity and molecular characterisation of rat and human glyceraldehyde 3-phosphate: Evolution of the Gene. Nucleic Acids Res. 13, 2485–2502.Google Scholar
  29. Vanlerberghe, F., Bonhomme, F., Hutchison III, C.A., Edgell, M.H. (1993). A major difference between the divergence patterns within the lines-1 families in mice and voles. Mol. Biol. Evol. 10, 719–731.Google Scholar
  30. Vincent, S., Jeanteur, P., Fort, P. (1990). Nucleotide sequence of hamster glyceraldehyde 3-phosphate deshydrogenase mRNA. Nucleic Acids Res. 10, 3054.Google Scholar
  31. Wilcoxon, F. (1945). Individual comparisons by ranking methods Biometrics Bull. 1, 80–83.Google Scholar
  32. Yanish-Perron, C., Viera, J., Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 109–119.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • P. Garcia-Meunier
    • 1
  • M. Etienne-Julan
    • 2
  • Ph. Fort
    • 2
  • M. Piechaczyk
    • 2
  • F. Bonhomme
    • 1
  1. 1.Laboratoire Génome et Populations, CNRS URA 1493Université de Montpellier IIMontpellier Cedex 05France
  2. 2.UMR 9942Institut de Génétique MoléculaireMontpellier Cedex 01France

Personalised recommendations