, Volume 103, Issue 9, pp 635–641 | Cite as

The chlorarachniophyte: a cell with two different nuclei and two different telomeres

  • Paul Gilson
  • Geoffrey I. McFadden


Chlorarachniophyte algae contain a complex chloroplast derived from the endosymbiosis of a eukaryotic alga. The reduced nucleus of the endosymbiont, the nucleomorph, is located between the inner and outer pair of membranes surrounding the chloroplast. The nucleomorph of chlorarachniophytes has previously been demonstrated to contain at least three small linear chromosomes. Here we describe cloning the end of the smallest nucleomorph chromosome which is shown to carry a telomere consisting of a tandemly repeated 7 bp sequence, TCTAGGG. Using the telomere repeat as a probe, we show that nucleomorph telomeres display typical hetero-disperse size distribution. The nucleomorph is shown to contain only three chromosomes with a haploid genome size of just 380kb. All six nucleomorph chromosome termini are identical with an rRNA cistron closely linked to the telomere. The nucleomorph chromosomes thus have relatively large inverted repeats at their ends. Chromosomes from the host nucleus are shown to have a different telomere repeat motif to that of the nucleomorph chromosomes.


Developmental Biology Genome Size Invert Repeat Repeat Motif Telomere Repeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bendich AJ (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24: 279–290Google Scholar
  2. Biessmann H, Mason JM (1994) Telomeric repeat sequences. Chromosoma 103: 154–161Google Scholar
  3. Boynton JE, Gillham NW, Newman SM, Harris EH (1992) Organelle genetics and transformation of Chlamydomonas. In: Hermann HG (ed) Plant gene research Cell organelles. Springer-Verlag, Wien, New York, pp 31–34Google Scholar
  4. Charron MJ, Read E, Haut SR,Michels CA (1989) Molecular evolution of the telomere-associated MAL Loci of Sacharomyces. Genetics 122: 307–316Google Scholar
  5. De Bruin D, Lanzer M, Ravetch JV (1994) The polymorphic subtelomeric regions of Plasmodium falciparum chromosomes contain arrays of repetitive sequence elements. Proc Natl Acad Sci USA 91: 619–623Google Scholar
  6. Eschbach S, Hofmann CJB, Maier UG, Sitte P, Hansmann P (1991) A eukaryotic genome of 660 kb: electrophoretic karyotype of neucleomorph and cell nucleus of the cryptomonad alga. Pyrenomonas salina. Nucleic Acids Res 19: 1779–1781Google Scholar
  7. Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragements to high specific activity. Anal Biochem 132: 6–13Google Scholar
  8. Greider CW, Autexier C, Avilion AA, Collins K, Harrington LA, Mantell LL, Prowse KR, Smith SK, Allsop RC, Counter CM, Vaziri H, Bacchetti S, Harley CB (1993) Terlomeres and telomerase: biochemistry and regulation in senescence and immortalization. In: Heslop-Harrison JS, Flavell RB (eds) The chromosome. Blos Scientific Publishers, Oxford, UK, pp 115–125Google Scholar
  9. Hansmann P, Eschbach S (1990) Isolation and preliminary characterisation of the nucleus and the nucleomorph of a cryptomonad, Pyrenomonas salina. Eur J Cell Biol 52: 373–378Google Scholar
  10. Howe CJ, Beanland TJ, Larkum AWD, Lockhart PJ (1992) Plastid origins. Trends Ecol Evol 7: 378–383Google Scholar
  11. Le Blancq SM, Kase RS, Van der Ploeg LHT (1991) Analysis of a Giardia lamblia rRNA encoding telomere with [TAGGG]n as the telomere repeat. Nucleic Acids Res 19: 5790Google Scholar
  12. McFadden GI, Gilson PR, Hofmann CJB, Adcock GJ, Maier UG (1994a) Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proc Natl Acad Sci USA 91: 3690–3694Google Scholar
  13. McFadden GI, Gilson PR, Douglas SE (1994b) The photosynthetic endosymbiont in cryptomonad cells produces both chloroplast and cytoplasmic-type ribosomes. J Cell Sci 107: 649–657Google Scholar
  14. Ohyama K (1992) Organization and expression of genes of plastid chromosomes from non-angiospermous land plants and green algae In: Hermann HG (ed) Plant gene research. Cell organelles. Springer-Verlag, Wien, New York, pp 137–163Google Scholar
  15. Palmer JD (1992) Comparison of chloroplasts and mitochondrial genome evolution in plants. In: Hermann HG (ed) Plant gene research Cell organelles. Springer-Verlag, Wien, New York, pp 99–133Google Scholar
  16. Powell WA, Kistler HC (1990) In vivo rearrangement of foreign DNA by Fusarium oxysporum produces linear self-replicating plasmids. J Bacteriol 1990: 3163–3171Google Scholar
  17. Reith M, Munholland J (1993) A high-resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5: 465–475Google Scholar
  18. Richards EJ, Ausubel FM (1988) Isolation of a higher eurkaryotic telomere from Arabidopsis thaliana. Cell 53: 127–136Google Scholar
  19. Richards EJ, Vongs A, Wlash M, Yang J, Chao S (1993) Substructure of telomere repeat arrays. In: Heslop-Harrison JS, Flavell RB (eds) The chromosome. Bios Scientific Publishers. Oxford, UK, pp 103–114Google Scholar
  20. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  21. Schechtman MG (1990) Characterisation of telomere DNA from Neurospora crassa. Gene 88: 159–165Google Scholar
  22. Shampay J, Szostack JW, Blackburn EH, (1984) DNA sequences of telomeres maintained in veast. Nature 310: 154–157Google Scholar
  23. Shippen DE (1993) Telomeres and telomerases. Curr Opin Genet Dev 3: 759–763Google Scholar
  24. Vahrenholz C, Riemen G, Pratje E, Dujon B, Michaelis G (1993) Mitochondrial DNA of Chlamydomonas reinhardtii the structure of the ends of the 15.8-kb genome suggests mechanisms for DNA replication. Curr Genet 24: 241–247Google Scholar
  25. Wu K-S, Tanksley SD (1993) Genetic and physical mapping of telomeres and macrosatellites of rice. Plant Mol Biol 22: 861–872Google Scholar
  26. Zakian VA (1989) Structure and function of telomeres. Annu Rev Genet 23: 579–604Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Paul Gilson
    • 1
  • Geoffrey I. McFadden
    • 1
  1. 1.Plant Cell Biology Research Centre, School of BotanyUniversity of MelbourneParkvilleAustralia

Personalised recommendations