Skeletal muscle damage during tourniquet-induced ischaemia

The initial step towards atrophy after orthopaedic surgery?
  • H.-J. Appell
  • S. Glöser
  • J. A. R. Duarte
  • A. Zellner
  • J. M. C. Soares
Article

Summary

Muscle biopsies from the vastus lateralis muscle of patients who had undergone anterior cruciate ligament surgery under conditions of tourniquet-induced ischaemia were examined under the electron microscope at different periods of time up to 90 min of ischaemia. The severity of the alterations in ultrastructure appeared to depend on the period of ischaemia. The pathological changes consisted of accumulation of lysosomes, persistent intrafibre oedema, and some extracellular oedema. Signs of fibre necrosis were found after 90 min of ischaemia. Capillary ultrastructure was only altered with regard to some swelling of the endothelium and marked thickening of the basement membrane. It was concluded that skeletal muscle could be severely affected even during relatively short periods of ischaemia, which might facilitate the development of muscle atrophy during immobilization after orthopaedic surgery.

Key words

Tourniquet Ischaemia Skeletal muscle Damage Lysosomes Oedema Capillaries Ultrastructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appell HJ (1990) Muscular atrophy following immobilization. Sports Med 10:42–58PubMedGoogle Scholar
  2. Artacho-Pérula E, Roldán-Villalobos R, Vaamonde-Lemos R (1991) Capillary and fibre size interrelationships in regenerating rat soleus muscle after ischemia: a quantitative study. Acta Anat 142:70–76Google Scholar
  3. Ashraf M, Livingstone L, Bloor CM (1977) Ultrastructural alterations in myocardial vessels after coronary occlusion. Scand Electron Microsc 2:500–506Google Scholar
  4. Blaisdell T, Steele M, Allen R (1978) Management of acute lower extremity arterial ischemia due to embolism and thrombosis. Surgery 84:822–834Google Scholar
  5. Blebea J, Kerr JC, Shumko JZ, Feinberg RN, Hobson II RW (1987) Quantitative histochemical evaluation of skeletal muscle to ischema and reperfusion injury. J Surg Res 43:311–318PubMedGoogle Scholar
  6. Bruner JM (1951) Safety factors in the use of the pneumatic tourniquet for hemostasis in surgery of the hand. J Bone Joint Surg 33A:221–224Google Scholar
  7. Cronenwett JL, Lee KR, Shlafer M, Zelenock GB (1989) The effect of ischemia-reperfusion derived oxygen free radicals on skeletal muscle calcium metabolism. Microcirc Endothelium Lymphatics 5:171–187PubMedGoogle Scholar
  8. Durán WN, Dillon PK (1989) Effects of ischemia-reperfusion injury on microvascular permeability in skeletal muscle. Microcirc Endothelium Lymphatics 5:223–239Google Scholar
  9. Hammersen F, Barker JH, Gidlöf A, Menger MD, Hammersen E, Messmer K (1989) The ultrastructure of microvessels and their contents following ischemia and reperfusion. Prog Appl Microcirc 13:1–26Google Scholar
  10. Harris K, Walker PM, Mickle DAG, Harding R, Gatley R, Wilson GJ, Kuzon B, McKee N, Romaschin AD (1986) Metabolic response of skeletal muscle to ischemia. Am J Physiol 250: H213-H220PubMedGoogle Scholar
  11. Idström J-P, Soussi B, Elander A, Bylund-Fellenius A-C (1990) Purine metabolism after in vivo ischemia and reperfusion in rat skeletal muscle. Am J Physiol 258:H1668-H1673Google Scholar
  12. Kumamoto T, Kleese WC, Cong J, Goll DE, Pierce PR, Allenn RE (1992) Localization of the Ca2+ dependent proteinases and their inhibitor in normal, fasted, and denervated rat skeletal muscle. Anat Rec 232:60–70PubMedGoogle Scholar
  13. Macknight ADC, Leaf A (1977) Regulation of cellular volume. Physiol Rev 57:510–573PubMedGoogle Scholar
  14. Nylander G, Nordström H, Franzen L, Henriksson KG, Larsson J (1988) Effects of hyperbaric oxygen treatment in postischemic muscle. A quantitative morphological study. Scand J Plast Reconstr Surg Hand Surg 22:31–39Google Scholar
  15. Ong SC, Caiozzo VJ, Starr KL (1989) Ischemia induced atrophy in skeletal muscle fibres (abstract). Int J Sports Med 10:373Google Scholar
  16. Patterson S, Klenerman L (1979) The effect of pneumatic tourniquets on the ultrastructure of skeletal muscle. J Bone Joint Surg 61 B: 178–183Google Scholar
  17. Pedowitz RA, Gershum DH, Fridén J, Garfin SR, Rydevik BL, Hargens AR (1992) Effects of perfusion intervals on skeletal muscle injury beneath and distal to a pneumatic tourniquet. J Hand Surg 17A:245–255Google Scholar
  18. Salminen A (1985) Lysosomal changes in skeletal muscles during the repair of exercise injuries in muscle fibers. Acta Physiol Scand [Suppl] 539:1–31Google Scholar
  19. Schmalbruch H (1985) Skeletal muscle. Handbook of microscopic anatomy, vol. II/6. Springer, Berlin Heidelberg New YorkGoogle Scholar
  20. Skjeldal B, Grøgaard B, Nordsletten L, Reiker0as O, Svindland A, Torvik A (1992) Protective effect of low-grade hypothermia in experimental skeletal muscle ichemia. Eur Surg Res 24:197–203Google Scholar
  21. Soussi B (1992) Skeletal muscle bioenergetics during ischemia and reperfusion. Cellular and molecular aspects. Thesis, University of Göteborg, GöteborgGoogle Scholar
  22. Sternberg WC III, Adelman B (1992) The temporal relationship between endothelial cell dysfunction and skeletal muscle damage after ischemia and reperfusion. J Vasc Surg 16:30–39Google Scholar
  23. Tani M (1990) Mechanisms of Ca2+ overload in reperfused ischemic myocardium. Annu Rev Physiol 52:543–559Google Scholar
  24. Tani M, Neely JR (1990) Na+ accumulation increases Ca 2+ overload and impairs function in anoxic rat heart. J Mol Cell Cardiol 22:57–72Google Scholar
  25. Tountas CP, Bergman RA (1977) Tourniquet ischemia: ultrastructural and histochemical observations of ischemic human muscle and of monkey muscle and nerve. J Hand Surg 2:31–37Google Scholar
  26. Walker PM, Lindsay T, Liauw S, Romaschin AD (1989) The impact of energy depletion on skeletal muscle. Microcirc Endothelium Lymphatics 5:189–206Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • H.-J. Appell
    • 1
  • S. Glöser
    • 1
  • J. A. R. Duarte
    • 2
  • A. Zellner
    • 3
  • J. M. C. Soares
    • 2
  1. 1.Institute for Experimental MorphologyGerman Sport UniversityCologneGermany
  2. 2.Department of Sports Biology, Faculty of Sport ScienceUniversity of PortoPortugal
  3. 3.Orthopaedic Clinic “Oskar-Helene-Heim”Free UniversityBerlinGermany

Personalised recommendations