Archive for History of Exact Sciences

, Volume 36, Issue 1, pp 21–39

On square roots and their representations

  • Jacques Dutka
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brent, R. P. [1976], “Multiple-precision zero-finding methods and the complexity of elementary function evaluation,” Analytical computational complexity, ed. by J. F. Traub, New York.Google Scholar
  2. Cantor, G. [1869], “Zwei Sätze über eine gewisse Zerlegung der Zahlen in unendliche Producte,” Zeitschrift für Mathematik und Physik, Bd. 14, 152–158.Google Scholar
  3. Chrystal, G. [1904], Algebra ..., 2 Vols., 6th ed., reprinted 1952 by Chelsea Publishing Co., New York.Google Scholar
  4. Colebrooke, H. F. [1817], Algebra with arithmetic and mensuration from the Sanskrit of Brahmagupta and Bāhskara, London.Google Scholar
  5. Datta, B. [1931], “Nārāyana's method for finding approximate value of a surd,” Bulletin of the Calcutta Mathematical Society, Vol. 23, 187–194.Google Scholar
  6. Dickson, L. E. [1919–1923], History of the theory of numbers, repr. 1971, Chelsea Publishing Co., New York.Google Scholar
  7. Dijksterhuis, E. J. [1957], Archimedes, New York.Google Scholar
  8. Dutka, J. [1971], “The square root of 2 to 1,000,000 decimals,” Mathematics of Computation, Vol. 25, 927–930.Google Scholar
  9. Engel, F. [1913], “Entwicklung der Zahlen nach Stammbrüchen,” Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 190–191.Google Scholar
  10. Escott, E. B. [1937], “Rapid method for extracting a square root,” American Mathematical Monthly, Vol. 44, 644–646.Google Scholar
  11. Euler, L. [1748], Introductio in analysin infinitorum, T.I., repr. in Opera Omnia, Ser. 1, Vol. VIII, Leipzig, 1922.Google Scholar
  12. Euler, L. [1770a], “De inventione quotcumque mediarum proportionalium citra radicum extractionem,” repr. in Opera Omnia, Ser. 1, Vol. VI, Leipzig, 1921, 240–262.Google Scholar
  13. Euler, L. [1770b], Vollständige Anleitung zur Algebra, repr. in Opera Omnia, Ser. 1, Vol. I, Leipzig, 1911.Google Scholar
  14. Euler, L. [1774], “Nova ratio quantitates irrationales proxime exprimendi,” repr. in Opera Omnia, Ser. 1, Vol. VI, Leipzig, 1921, 316–349.Google Scholar
  15. Fowler, D. H. [1979], “Ratio in early Greek mathematics,” Bulletin of American Mathematical Society, N.S., Vol. 1, 807–846.Google Scholar
  16. Günther, S. [1882], “Die quadratischen Irrationalitäten der Alten und deren Entwicklungsmethoden,” Abhandlungen zur Geschichte der Mathematik, Heft 4, 1–134.Google Scholar
  17. Halley, E. [1694], “Methodus nova accurata & facilis inveniendi radices aequationium quarumcumque generaliter, sine praevia reductione,” Philosophical Transactions of the Royal Society, Vol. 18, 136–148.Google Scholar
  18. Heath, Th. L. [1898], The works of Archimedes ..., repr. 1953 with the Supplement of 1912, Dover Publications, New York, 1953.Google Scholar
  19. Heath, Th. L. [1910], Diophantus of Alexandria, 2nd ed., London; repr. 1964, New York.Google Scholar
  20. Heath, Th. L. [1921], A history of Greek mathematics, Oxford, 2 Vols.Google Scholar
  21. Hofmann, J. E. [1930], “Erklärungsversuche für Archimedes Berechnung von 38-1,” Archiv für Geschichte der Mathematik der Naturwissenschaft und der Technik, Bd. XII, 386–408.Google Scholar
  22. Hofmann, J. E. [1934], “Über die Annäherung von Quadratwurzeln bei Archimedes und Heron,” Jahresbericht der deutschen Mathematiker Vereinigung, Bd. 43, 187–210.Google Scholar
  23. Horner, J. [1860], “Approximation to the roots of algebraic equations in a series of Aliquot parts,” Quaterly Journal of Pure and Applied Mathematics, Vol. III, 251–262.Google Scholar
  24. Khovanski, A. N. [1963], The application of continued fractions, Groningen.Google Scholar
  25. Knorr, W. R. [1975], The evolution of the Euclidean elements, Dordrecht.Google Scholar
  26. Knorr, W. R. [1976], “Archimedes and the measurement of the circle: A new interpretation,” Archive for History of Exact Sciences, Vol. 15, 115–140.Google Scholar
  27. Lagny, Th. F. de [1723], “Méthode générale pour transformer les nombres irrationaux en séries de fractions rationelles ...,” Mémoires de mathématique et de physique tirés des registres de l'Academie Royale des Sciences, 55–69.Google Scholar
  28. Lagrange, J. L. L. [1776], “Sur l'usage des fractions continues dans le calcul intégrale,” Oeuvres, Vol. IV, 301–332.Google Scholar
  29. Lambert, J. H. [1758], “Observationes variae in Mathesin puram,” repr. in Opera Mathematica, Zürich, Vol. I, 1946, 16–51.Google Scholar
  30. Lambert, J. H. [1770], “Verwandlung der Brüche,” repr. in Opera Mathematica, Zürich, Vol. I, 1946–1948, 133–188.Google Scholar
  31. Lambert, J. H. [1781–1785], Deutscher Gelehrter Briefwechsel, Bd. I–VI, Berlin.Google Scholar
  32. Lorey, W. [1939], “Über ein Eulersches Verfahren zur Wurzelberechnung,” Monatshefte für Mathematik und Physik, Bd. 48 (1939), 190–197.Google Scholar
  33. Lucas, E. [1878], “Théorie des functions numériques simplement périodiques, I,” American Journal of Mathematics, Vol. I, 184–240.Google Scholar
  34. Mercator, N. [1668], Logarithmotechnia ..., London.Google Scholar
  35. Neugebauer, O., & Sachs, A. [1945], Mathematical cuneiform texts, New Haven, 42–43.Google Scholar
  36. Ostrowski, A. [1929], “Ueber einige Verallgemeinerungen des Eulerschen Produktes ...,” Verhandlungen der Naturforschenden Gesellschaft in Basel, Bd. XL, T.I., 153–214.Google Scholar
  37. Patz, W. [1955], Tafel der regelmassigen Kettenbrüchen ..., Berlin.Google Scholar
  38. Perron, O. [1960], Irrationalzahlen, Vierte Aufl., Berlin.Google Scholar
  39. Rubbert, F. K. [1948], “Zur radizierung mit der Rechenmaschine,” Zeitschrift für angewandte Mathematik und Mechanik, Bd. 28, 190–191.Google Scholar
  40. Schröder, E. [1870], “... Methoden zur Auflösung der Gleichungen,” Mathematische Annalen, Bd. 2, 317–365.Google Scholar
  41. Sierpinski, W. [1964], Elementary theory of numbers, Monografie Matematyczne, T. 42, Warsaw (translated).Google Scholar
  42. Simson, R. [1753], “An explication of an obscure passage in Albert Girard's commentary upon Simon Stevin's works ...,” Philosophical Transactions of the Royal Society of London, Vol. 48, 368–377.Google Scholar
  43. Smith, D. E. [1929], A source book in mathematics, repr. in 2 vols., 1959, Dover Publications, Inc., New York.Google Scholar
  44. Sulamin, E. [1976], “Computation of ρ using arithmetic-geometric mean,” Mathematics of Computation, Vol. 30, 565–570.Google Scholar
  45. Thibaut, G. [1875], “On the Súlvasútras,” Journal of the Royal Asiatic Society of Bengal, Calcutta, Vol. 44, 227–275.Google Scholar
  46. Thiele, T. N. [1884], “Arkhimedes og \(\sqrt 3 \),” Tidsskrift for Mathematik, R. 5, A. 2, 151–153.Google Scholar
  47. Traub, J. F. [1982], Iterative methods for the solution of equations, 2nd ed., New York.Google Scholar
  48. Tropfke, J. [1980], Geschichte der Elementar-Mathematik, 4. Aufl., Bd. 1, Neubearbeitet von K. Vogel, K. Reich, & H. Gericke, Berlin.Google Scholar
  49. van der Waerden, B. L. [1983], Geometry and algebra in ancient civilizations, Berlin.Google Scholar
  50. Wall, H. S. [1948], “A modification of Newton's method,” American Mathematical Monthly, Vol. 55, 90–94.Google Scholar
  51. Wertheim, G. [1898], “Die Berechnung der irrationalen Quadratwurzeln und die Erfindung der Kettenbrüche,” Abhandlungen zur Geschichte der Mathematik, Achtes Heft, 147–160.Google Scholar
  52. Woepcke, F. [1854], “Recherches sur l'histoire des sciences mathématiques ...,” Journal Asiatique ..., Ser. 5, T. 4.Google Scholar
  53. Wynn, P. [1956], “On a cubically convergent process for determining the zeros of certain functions,” Mathematics of Computation, Vol. 10, 97–100.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jacques Dutka
    • 1
  1. 1.New York City

Personalised recommendations