Marine Biology

, Volume 114, Issue 4, pp 633–643 | Cite as

Ultrastructure of the ovary and oogenesis in the jellyfish Linuche unguiculata and Stomolophus meleagris, with a review of ovarian structure in the Scyphozoa

  • K. J. Eckelbarger
  • R. Larson


Ovarian structure and oogenesis has been examined in six scyphozoan species including the semaeostome Diplumularis antarctica Maas, 1908 (collected in 1987 in McMurdo Sound, Antarctic), the rhizostomes Cassiopea xamachana Bigelow, 1892 (collected in Belize in 1988), and Stomolophus meleagris L. Agassiz, 1862 (collected in Ft. Pierce Inlet in 1988), and the coronates Periphylla periphylla (Peron and Lesueur, 1810), Nausithoe atlantica Broch, 1914 (both collected in the Bahamas in 1988), and Linuche unguiculata (Schwartz, 1788) (collected in Nassau Harbor, Bahama Islands in 1989). Based on these findings and information on five other scyphozoan species from additional literature sources, at least two fundamentally different types of ovaries exist in the Scyphozoa. In semaeosotome and rhizostome species, oocytes develop in close association with specialized gastrodermal cells called trophocytes which may serve a nutritive function. However, coronate species lack trophocytes and oocytes develop freely in the mesoglea. The ovaries of S. meleagris and L. unguiculata are used as models to represent the ultrastructural events occurring during oogenesis in species having trophocytes and those lacking them, respectively. In both L. unguiculata and S. meleagris, the ovaries arise as evaginations of the gastrodermis in the floor of interradial pouches. Germ cells appear to originate from endodermally-derived gastrodermal cells and migrate into the mesoglea prior to vitellogenesis. In L. unguiculata, the oocytes develop freely within the mesoglea throughout vitellogenesis, while in S. meleagris each oocyte maintains contact with specialized gastrodermal cells called trophocytes. In the vitellogenic oocytes of both species, numerous invaginations of the oolemma result in the formation of intraooplasmic channels throughout the ooplasm. These channels are intimately associated with cisternae of rough endoplasmic reticulum and may play some role in yolk precursor uptake by substantially increasing the surface area of the oocyte. Vitellogenesis is similar in both species and involves the autosynthetic activity of the Golge complex and rough endoplasmic reticulum, and the heterosynthetic incorporation of yolk precursors through receptor-mediated endocytosis. However, in the oocytes of S. meleagris, the trophocytes probably play a role in the transfer of nutrients from the gastrovascular cavity to the oocyte. The present study suggests that scyphozoans were among the first metazoans to develop ovarian accessory cells during their reproductive evolution. The trophocyte-oocyte association observed in some scyphozoans is similar to but structurally less complex than the trophonema-oocyte association described from anthozoans. Scyphozoan ovarian morphology helps support the view that the Scyphozoa share a closer phylogenetic relationship with the Anthozoa than with the Hydrozoa.


Rough Endoplasmic Reticulum Accessory Cell Additional Literature Close Phylogenetic Relationship Vitellogenic Oocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Adiyodi, K. G., Adiyodi, R. G. (1983). Reproductive biology of invertebrates. John Wiley & Sons Ltd., New YorkGoogle Scholar
  2. Anderson, E. (1974). Comparative aspects of the ultrastructure of the female gamete. In: Bourne, G. H., Danielli, J. F., Jean, K. W. (eds.) Aspects of nuclear structure and function. Academic Press, New York, p. 1–70. (Int. Rev. Cytol. Suppl. No. 4)Google Scholar
  3. Avian, M. (1983). Tecniche istologiche per lo studio delle gonadi nei Celenterati. Boll. Soc. adriat. Sci. 67: 89–98Google Scholar
  4. Barnes, R. D. (1980). Invertebrate zoology. W. B. Saunders Co., New YorkGoogle Scholar
  5. Beams, H. W., Kessel, R. G. (1983). Cnidaria. In: Adiyodi, K. G., Adiyodi, R. G. (eds.) Reproductive biology of invertebrates, Vol. I. Oogenesis, oviposition and oosorption. John Wiley & Sons, New York, p. 31–66Google Scholar
  6. Bilinski, S. (1976). Ultrastructural studies on the vitellogenesis of Tetrodontophora bielanensis (Waga) (Columbolla). Cell Tissue Res. 168: 399–410Google Scholar
  7. Boyer, C. B. (1972). Ultrastructural studies of differentiation in the oocyte of the polyclad turbellarian, Prostheceraeus floridanus. J. Morph. 136: 273–296Google Scholar
  8. Campbell, R. D. (1974). Cnidaria. In: Giese, A. C., Pearse, J. S. (eds.) Reproduction of marine invertebrates, Vol. 1. Acoelomate and Pseudoacoelomate Metazoans. Academic Press, New York, p. 133–199Google Scholar
  9. Eckelbarger, K. J. (1983). Evolutionary radiation in polychaete ovaries and vitellogenic mechanisms: their possible role in life history patterns. Can. J. Zool. 61: 487–504Google Scholar
  10. Eckelbarger, K. J. (1984). Comparative aspects of oogenesis in polychaetes. Fortschr. Zool. 29: 123–148Google Scholar
  11. Eckelbarger, K. J., Larson, R. L. (1988). Ovarian morphology and oogenesis in Aurelia aurita (Scyphozoa: Semaeostomae): ultrastructural evidence of heterosynthetic yolk formation in a primitive metazoan. Mar. Biol. 100: 103–115Google Scholar
  12. Fautin, D. G., Mariscal, R. N. (1991). Cnidaria: Anthozoa. In: Harrison, F. W., Westfall, J. A. (eds.) Microscopic anatomy of invertebrates. Vol. 2. Placozoa, Porifera, Cnidaria, and Ctenophora. Wiley-Liss, New York, p. 267–358Google Scholar
  13. Grenigni, V. (1979). An ultrastructural approach to planarian taxonomy. Syst. Zool. 28: 345–355Google Scholar
  14. Gremigni, V. (1983). Platyhelminthes-Turbellaria. In: Adiyodi, K. G., Adiyodi, R. G. (eds.) Reproductive biology of invertebrates. John Wiley & Sons Ltd., New York, p. 67–107Google Scholar
  15. Gremigni, V., Nigro, M. (1983). An ultrastructural study of oogenesis in a marine triclad. Tissue Cell 156: 405–415Google Scholar
  16. Gremigni, V., Nigro, M. (1984). Ultrastructural study of oogenesis in Monocelis lineata (Turbellaria, Proseriata). Int. J. Invert. Reprod. Dev. (Amsterdam) 7: 105–118Google Scholar
  17. Harrison, F. W., de Vos, L. (1991). Porifera. In: F. W. Harrison, Westfall, J. A. (eds.) Microscopic anatomy of invertebrates, Vol. 2 Placozoa, Porifera, Cnidaria and Ctenophora. Wiley-Liss, New York, p. 29–89Google Scholar
  18. Huebner, E., Anderson, E. (1976). Comparative spiralian oogenesis — ultrastructural aspects: an overview. Am Zool. 16: 315–343Google Scholar
  19. Kessel, R. G. (1968). Electron microscope studies of developing oocytes of a coelenterate medusa with special references to vitellogenesis. J. Morph. 126: 211–248Google Scholar
  20. Kremer, P., Costello, J., Canino, M. (1990). Significance of photosynthetic endosymbionts to the carbon budget of the scyphomedusa Linuche unguiculata. Limnol. Oceanogr. 35: 609–624Google Scholar
  21. Larkman, A. U. (1983). An ultrastructural study of oocyte growth within the endoderm and entry into the mesoglea in Actinia fragacea (Cnidaria, Anthozoa). J. Morph. 178: 155–177Google Scholar
  22. Larkman, A. U., Carter, M. A. (1982). Preliminary ultrastructural and autoradiographic evidence that the trophonema of the sea anemone Actinia fragacea has a nutritive function. Int. J. Invert. Reprod. Dev. (Amsterdam) 4: 375–379Google Scholar
  23. Larson, R. L. (1976). Marine flora and fauna of the Northeastern United States. Cnidaria: Scyphozoa, NOAA natn. mar. Fish. Serv. tech. Rep. U. S. Dept. Commerce 397: 1–18Google Scholar
  24. Lesh-Laurie, G. E., Suchy, P. E. (1991) Cnidaria: Scyphozoa and Cubozoa. In: Harrison, F. W., Westfall, J. A. (eds.) Microscopic anatomy of invertebrates. Wiley-Liss, New York, p. 185–266Google Scholar
  25. Ortiz-Corps, E., Cutress, E. E., Cutress, B. M. (1987). Life history of the coronate scyphozoan Linuche unguiculata (Swartz, 1788). Caribb. J. Sci. 23: 432–443Google Scholar
  26. Rotinni-Sandrini, L., Avian, M., Axiak, V., Malej, A. (1983) The breeding period of Pelagia noctiluca (Scyphozoa, Semaeostomae) in the Adriatic and Central Mediterranean Sea. Nova Thalassia 6: 65–75Google Scholar
  27. Smith, H. G. (1936). Contribution to the anatomy and physiology of Cassiopea frondosa. Pap. Tortugas Lab. 32: 19–53Google Scholar
  28. Spracklin, B. W. (1984). Oogenesis in Tubularia larynx and Tubularia indivisa (Hydrozoa, Athecata). Ph. D. dissertation. University of New Hampshire, Durham, New Hampshire, USAGoogle Scholar
  29. Thiel, H. (1966). The evolution of scyphozoa a review. In: Rees, W. J. (ed.) The Cnidaria and their evolution. Academic Press, New York, p. 77–117Google Scholar
  30. Thomas, M. B., Edwards, N. C. (1991). Cnidaria: Hydrozoa. In: Harrison, F. W., Westfall J. A. (eds.) Microscopic antomy of invertebrates, Vol. 2. Placozoa, Porifera, Cnidaria and Ctenophora. Wiley-Liss, New York p. 91–183Google Scholar
  31. Weglarska, B. (1987). Yolk formation in Isohypsibius (Eutardigrada). Zoomorphology 107: 287–292Google Scholar
  32. Widersten, B. (1965). Genital organs and fertilization in some scyphozoa. Zool. Bidr. Upps. 37: 45–58Google Scholar
  33. Youngbluth, M. J. (1984). Manned submersibles and sophisticated instrumentation: tools for oceanographic research. In: Proceedins of SUBTECH 83′ Symposium. Society for Underwater Technology, London, p. 335–344Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • K. J. Eckelbarger
    • 1
    • 2
  • R. Larson
    • 3
  1. 1.Darling Marine CenterUniversity of MaineWalpoleUSA
  2. 2.Department of Animal, Veterinary and Aquatic SciencesUniversity of MaineOronoUSA
  3. 3.U.S. Fish and Wildlife ServiceBrunswickUSA

Personalised recommendations