Applied Physics A

, Volume 53, Issue 4, pp 317–323 | Cite as

Dislocation generation in silicon grown laterally over SiO2 by liquid phase epitaxy

  • F. Banhart
  • R. Bergmann
  • F. Phillipp
  • E. Bauser
Surfaces And Maltilagers


Epitaxial lateral overgrowth (ELO) on thermally oxidized and patterned (111) Si is effected by liquid phase epitaxy (LPE). It produces Si layers spreading out on the amorphous SiO2 which are either perfectly grown defect-free or, coexisting, defective layers containing dislocations. High voltage electron microscopy of the defective layers reveals regular arrangements of the dislocations which result from glide and multiplication processes governed by the elastic interactions between the dislocations. The nucleation of the first dislocations during the ELO process is attributed to a slight warping of the substrates. A corresponding bending of the epitaxial layer induces mechanical stress, which may exceed the critical value at the oxide edges of the seeding windows where the first dislocations nucleate. The characteristics of the dislocation arrangements and lattice imaging results support this model. Suggestions are made for ways to reduce stress and, thus, avoid dislocation formation.


61.70.Jc 81.10.Dn 73.40.Ty 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.P. Zingg, J.A. Friedrich, G.W. Neudeck, B. Höfflinger: IEEE Trans. ED-37, 1452 (1990)Google Scholar
  2. 2.
    M. Sasaki, T. Katoh, H. Onoda, N. Hirashita: Appl. Phys. Lett. 49, 397 (1986)Google Scholar
  3. 3.
    E. Bauser, D. Käss, M. Warth, H.P. Strunk: Mater. Res. Soc. Symp. Proc. 54, 267 (1986)Google Scholar
  4. 4.
    R. Bergmann, E. Bauser, J.H. Werner: Appl. Phys. Lett. 57, 351 (1990)Google Scholar
  5. 5.
    R. Bergmann: J. Cryst. Growth 110, 823 (1991)Google Scholar
  6. 6.
    F. Banhart, F. Phillipp, R. Bergmann, E. Czech, M. Konuma, E. Bauser: In Proc. of the 12th Int. Congress for Electron Microscopy, Vol. 4, ed. by L.D. Peachy, D.B. Williams (San Francisco Press, San Francisco 1990) p. 566Google Scholar
  7. 7.
    J.T. McGinn, L. Jastrzebski, J.F. Corboy: J. Electrochem. Soc. 131, 398 (1984)Google Scholar
  8. 8.
    R. Bergmann, F. Banhart, R. Köhler, B. Jenichen: To be publishedGoogle Scholar
  9. 9.
    E. Bauser, M. Frik, K.S. Löchner, L. Schmid, R. Ulrich: J. Cryst. Growth 27, 148 (1974)Google Scholar
  10. 10.
    H.R. Pettit, G.R. Booker: In Proc. 25th Anniversary Meeting of EMAG. Inst. Phys. Conf. Ser. 10, ed. by W.C. Nixon (London, Bristol 1971) p. 290Google Scholar
  11. 11.
    C.H. Lane: IEEE Trans. ED-15, 998 (1968)Google Scholar
  12. 12.
    R.J. Jaccodine, W.A. Schlegel: J. Appl. Phys. 37, 2429 (1966)Google Scholar
  13. 13.
    I.A. Blech, E.S. Meieran: J. Appl. Phys. 38, 2913 (1967)Google Scholar
  14. 14.
    S.C.H. Lin, I. Pugacz-Muraskiewicz: J. Appl. Phys. 43, 119 (1972)Google Scholar
  15. 15.
    S.D. Brotherton, T.G. Read, D.W. Lamb, A.F.W. Willoughby: Solid State Electron. 16, 1367 (1973)Google Scholar
  16. 16.
    G. Franz, W. Hartmann: Appl. Phys. 23, 107 (1980)Google Scholar
  17. 17.
    E.P. EerNisse: Appl. Phys. Lett. 35, 8 (1979)Google Scholar
  18. 18.
    E. Kobeda, E.A. Irene: J. Vac. Sci. Technol. B 6, 574 (1988)Google Scholar
  19. 19.
    A. Bohg, A.K. Gaind: Appl. Phys. Lett. 33, 895 (1978)Google Scholar
  20. 20.
    G. Franz, B.O. Kolbesen, R. Lemme, H. Strunk: In Semiconductor Silicon 1981, ed. by H. Huff, R.J. Kriegler, Y. Takeishi (The Electrochem. Soc. Pennington, NJ 1981) p. 821Google Scholar
  21. 21.
    L. Jastrzebski, R. Soydan, N. Armour, S. Vecrumba, W.N. Henry: J. Electrochem. Soc. 134, 209 (1987)Google Scholar
  22. 22.
    J. Vanhellemont, S. Amelinckx, C. Claeys: J. Appl. Phys. 61, 2170 (1987)Google Scholar
  23. 23.
    J. Vanhellemont, C. Claeys: J. Appl. Phys. 63, 5703 (1988)Google Scholar
  24. 24.
    C.I. Drowley, G.A. Reid, R. Hull: Appl. Phys. Lett. 52, 546 (1988)Google Scholar
  25. 25.
    H. Kitajima, Y. Fujimoto, N. Kasai, A. Ishitani, N. Endo: J. Cryst. Growth 98, 264 (1989)Google Scholar
  26. 26.
    E.P. EerNisse: Appl. Phys. Lett. 30, 290 (1977)Google Scholar
  27. 27.
    D. Thebault, L. Jastrzebski: RCA Rev. 41, 592 (1980)Google Scholar
  28. 28.
    F. Banhart, F. Phillipp: To be publishedGoogle Scholar
  29. 29.
    F.C. Frank, W.T. Read: Phys. Rev. 79, 722 (1950)Google Scholar
  30. 30.
    I. Kovács, L. Zsoldos: Dislocations and Plastic Deformation (Pergamon, Oxford 1973)Google Scholar
  31. 31.
    P. Pandya, A. Martinez: Appl. Phys. Lett. 52, 901 (1988)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • F. Banhart
    • 1
  • R. Bergmann
    • 2
  • F. Phillipp
    • 1
  • E. Bauser
    • 2
  1. 1.Max-Planck-Institut für Metallforschung, Institut für PhysikStuttgart 80Fed. Rep. Germany
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgart 80Fed. Rep. Germany

Personalised recommendations