Archive for History of Exact Sciences

, Volume 38, Issue 4, pp 365–383 | Cite as

The Keplerian and mean motions. A geometrical study

  • Y. Maeyama


The point of reference to which the mean motion of the planets against Keplerian motion can optimally be applied and the behavior of its astronomical functions are analysed mathematically. To the results of our problem, which was solved by the first and second laws of Kepler, virtually all models of planetary motions seem to be related.


Planetary Motion Keplerian Motion Geometrical Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brouwer, Dirk, & Clemence, Gerald M., Methods of Celestial Mechanics. New York 1961.Google Scholar
  2. Cassini, J. D.: De l'origine et du progrès de l'astronomie. Paris 1693.Google Scholar
  3. Explanatory supplement to the astronomical ephemeris and the American ephemeris and nautical almanac. London 1961.Google Scholar
  4. Kepler, Johannes: Astronomia nova. Prague 1609.Google Scholar
  5. Kovalevsky, Jean: Introduction à la mécanique céleste. Paris 1963.Google Scholar
  6. Littrow, J. J. v.: Die Wunder des Himmels. Vollständig neu bearbeitet von K. Stumpff. Bonn 196311.Google Scholar
  7. Maeyama, Y.: Astronomical periods. To appear in “Celestial Mechanics”.Google Scholar
  8. Mercator, Nicolaus: Hypothesis astronomica nova. London 1664.Google Scholar
  9. Neugebauer, Otto: A history of ancient mathematical astronomy. 3 vols., New York 1975.Google Scholar
  10. Stumpff, Karl: Himmelsmechanik. Vol. 1, Berlin 1959.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co. KG 1988

Authors and Affiliations

  • Y. Maeyama
    • 1
  1. 1.Institut für Geschichte der NaturwissenschaftenUniversität FrankfurtGermany

Personalised recommendations