Journal of Materials Science

, Volume 29, Issue 10, pp 2557–2571 | Cite as

Processing of molybdenum disilicide

  • Y. -L. Jeng
  • E. J. Lavernia
Review

Abstract

Inspection of the scientific literature reveals that intermetallic compounds have, in recent years, attracted considerable interest as a result of their unique elevated temperature characteristics. Among the wide range of intermetallic compounds that are actively being studied, MoSi2 has been singled out as a result of its unique combination of properties, which include an excellent oxidation resistance, a high modulus of elasticity, and an elevated melting point (2030°C). In view of this interest, the present work was undertaken with the objective of providing the reader with a comprehensive review of the mechanical and oxidation behaviour of MoSi2, paying particular attention to the synergism between processing and microstructure. Accordingly, synthesis techniques, including powder metallurgy, self-propagating hightemperature synthesis, spray processing, solid-state displacement reactions, and exothermic dispersion, are critically reviewed and discussed. In addition, recent efforts aimed at using MoSi2 as a matrix material in metal-matrix composites are also critically reviewed and discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. Murarka, J. Vacuum Sci. Technol. 17 (1980) 775.Google Scholar
  2. 2.
    B. K. Bhattacharyya, D. M. Bylander and L. Kleinman, Phys. Rev. B 31 (1985) 2049.Google Scholar
  3. 3.
    B. K. Bhattacharyya, D. M. Bylander and L. Kleinman, ibid. 31 (1985) 5462.Google Scholar
  4. 4.
    M. Azizan, R. Baptist, T. A. Nguyen Tan and J. Y. Veuillen, Appl. Surf. Sci. 38 (1989) 117.Google Scholar
  5. 5.
    A. Climent, J. Perriere, A. Laurent, B. Lavernhe, R. Perez-Casero and J. M. Martinezduart, ibid. 38 (1989) 125.Google Scholar
  6. 6.
    J. Schlichting, High Temp.-High Pressure 10 (1978) 241.Google Scholar
  7. 7.
    F. D. Gac and J. J. Petrovic, J. Amer. Ceram. Soc. 68 (1985) C-200.Google Scholar
  8. 8.
    A. K. Vasudevan and J. J. Petrovic, Mater. Sci. Engng A155 (1992) 1.Google Scholar
  9. 9.
    T. C. Lu, Y. G. Deng, C. G. Levi and R. Mehrabian, in “Advanced Metal Matrix Composites for Elevated Temperatures Conference Proceedings”, edited by M. N. Gungor, E. J. Lavernia and S. G. Fishman (ASM Internat. Materials Park, Ohio, 1991) p. 11.Google Scholar
  10. 10.
    T. C. Lu, A. G. Evans, R. J. Hecht and R. Mehrabian, Acta Metall. Mater. 39 (1991) 1853.Google Scholar
  11. 11.
    P. J. Mestcher and D. S. Schwartz, JOM 41 (1989) 52.Google Scholar
  12. 12.
    J. D. Cotton, Y. S. Kim and M. J. Kaufman, Mater. Sci. Engng A144 (1991) 287.Google Scholar
  13. 13.
    M. J. Maloney and R. J. Hecht, ibid. A155 (1992) 19.Google Scholar
  14. 14.
    Y. Umakoshi, T. Hirano, T. Sakagami and T. Yamane, Scripta Metall. 23 (1989) 87.Google Scholar
  15. 15.
    Y. Umakoshi, T. Hirano, T. Sakagami and T. Yamane, Acta Metall. Mater. 38 (1990) 909.Google Scholar
  16. 16.
    Y. Umakoshi, T. Sakagami, T. Yamane and T. Hirano, Phil. Mag. Lett. 59 (1989) 159.Google Scholar
  17. 17.
    O. Unal, J. J. Petrovic, D. H. Carter and T. E. Mitchell, J. Amer. Ceram. Soc. 73 (1990) 1752.Google Scholar
  18. 18.
    M. Nakamura, S. Matsumoto and T. Hirano, J. Mater. Sci. 25 (1990) 3309.Google Scholar
  19. 19.
    T. Hirano, M. Nakamura, K. Kimura and Y. Umakoshi, Ceram. Engng Sci. Proc. 12 (1991) 1619.Google Scholar
  20. 20.
    K. Kimura, M. Nakamura and T. Hirano, J. Mater. Sci. 25 (1990) 2487.Google Scholar
  21. 21.
    R. R. Giler, Metals Engineering Quarterly Nov. (1973) 48.Google Scholar
  22. 22.
    V. Bizzari, B. Linder and N. Lindskog, Metals Mater. 5 (1989) 403.Google Scholar
  23. 23.
    V. Bizzari, B. Linder and N. Lindskog, Ceram. Bull. 68 (1989) 1834.Google Scholar
  24. 24.
    P. S. Kisly and V. Y. Kodash, Ceramics Intl 15 (1989) 189.Google Scholar
  25. 25.
    A. J. Moulson and J. M. Herbet, in “Electroceramics: Materials, Properties, Application” (Chapman and Hall, New York, 1991) p. 121.Google Scholar
  26. 26.
    J. J. Lewandowski, D. Dimiduk, W. Kerr and M. G. Mendiratta, in “High Temperature/High-Performance Composites”, Materials Research Society Symposium Proceedings Vol. 120, edited by F. D. Lemkey, A. G. Evans, S. G. Fishman and J. R. Strife (Materials Research Society, Pittsburgh, Pennsylvania, 1988) p. 103.Google Scholar
  27. 27.
    J. J. Petrovic and R. E. Honnell, Ceram. Eng. Sci. Proc. 11 (1990) 734.Google Scholar
  28. 28.
    R. G. Castro, R. W. Smith, A. D. Rollett and P. W. Stanek, Scripta Metall. Mater. 26 (1992) 207.Google Scholar
  29. 29.
    R. G. Castro, R. W. Smith, A. D. Rollett and P. W. Stanet, Mater. Sci. Engng A155 (1992) 101.Google Scholar
  30. 30.
    D. H. Carter and P. L. Martin, in “Intermetallic Matrix Composites”, Materials Research Society Symposium Proceedings Vol. 194, edited by D. L. Anton, R. McMeeking, D. Miracle and P. Martin (Materials Research Society, Pittsburgh, Pennsylvania, 1990) p. 131.Google Scholar
  31. 31.
    L. Xiao, Y. S. Kim and R. Abbaschian, ibid.“ p. 399.Google Scholar
  32. 32.
    S. Maloy, A. H. Heuer, J. Lewandowski and J. J. Petrovic, J. Amer. Ceram. Soc. 74 (1991) 2704.Google Scholar
  33. 33.
    T. C. Chou, Scripta Metall. Mater. 24 (1990) 1131.Google Scholar
  34. 34.
    W. S. Gibbs, J. J. Petrovic and R. E. Honnell, Ceram. Engng Sci. Proc. 8 (1987) 645.Google Scholar
  35. 35.
    D. H. Carter, J. J. Petrovic, R. E. Honnell and W. S. Gibbs, ibid. 10 (1989) 1121.Google Scholar
  36. 36.
    D. H. Carter and G. F. Hurley, J. Amer. Ceram. Soc. 70 (1987) C-79.Google Scholar
  37. 37.
    J.-M. Yang, W. Kai and S. M. Jeng, Scripta. Metall 23 (1989) 1953.Google Scholar
  38. 38.
    J. J. Petrovic and R. E. Honnell, J. Mater. Sci. Lett. 9 (1990) 1083.Google Scholar
  39. 39.
    W. Schmid, W. Wruss, R. Stroh, T. Ekstrom and B. Lux, Ceramic Forum Intl 67 (1990) 245.Google Scholar
  40. 40.
    A. V. Novikov, V. F. Melekhin and V. S. Pegov, Refractories 30 (1990) 426.Google Scholar
  41. 41.
    E. N. Kulenko and B. I. Poplyak, ibid. 30 (1990) 418.Google Scholar
  42. 42.
    J.-M. Yang and S. M. Jeng, in “Intermetallic Matrix Composites”, Materials Research Society Symposium Proceedings Vol. 194, edited by D. L. Anton, R. McMeeking, D. Miracle and P. Martin (Materials Research Society, Pittsburgh, Pennsylvania, 1990) p. 138.Google Scholar
  43. 43.
    J. J. Petrovic and R. E. Honnell, J. Mater. Sci. 25 (1990) 4453.Google Scholar
  44. 44.
    A. K. Battacharya and J. J. Petrovic, J. Amer. Ceram. Soc. 74 (1991) 2700.Google Scholar
  45. 45.
    J. J. Petrovic, R. E. Honnell, T. E. Mitchell, R. K. Wade and K. J. McClellan, Ceram. Engng. Sci. Proc. 12 (1991) 1633.Google Scholar
  46. 46.
    S. C. Tuffe, K. P. Plucknett and D. S. Wilkinson, ibid. 14 (1993) 1199.Google Scholar
  47. 47.
    K. Sadananda, C. R. Feng, H. Jones and J. J. Petrovic, Mater. Sci. Engng A155 (1992) 227.Google Scholar
  48. 48.
    K. Sadananda, H. Jones, J. Feng, J. J. Petrovic and A. K. Vasudevan, Ceram. Engng Sci. Proc. 12 (1991) 1671.Google Scholar
  49. 49.
    J. J. Petrovic and A. K. Vasudevan, in “Intermetallic Matrix Composites II”, Materials Research Society Symposium Proceedings Vol. 273, edited by D. Miracle, J. Graves and D. Anton (Materials Research Society, Pittsburgh, Pennsylvania, 1992) p. 229.Google Scholar
  50. 50.
    K. Sadananda, C. R. Feng, in “Processing and Fabrication of Advanced Materials for High Temperature Applications II”, edited by V. A. Ravi and T. S. Srivatsan (Minerais, Metals & Materials Society, Warrendale, Pennsylvania, 1993) p. 331.Google Scholar
  51. 51.
    K. K. Richardson and D. W. Freitag, Ceram. Engng Sci. Proc. 12 (1991) 1679.Google Scholar
  52. 52.
    R. M. Aikin, Jr., ibid. 12 (1991) 1643.Google Scholar
  53. 53.
    A. K. Bhattacharya and J. J. Petrovic, J. Amer. Ceram. Soc. 75 (1992) 23.Google Scholar
  54. 54.
    A. R. Cox and R. Brown, J. Less-Common Metals 6 (1964) 51.Google Scholar
  55. 55.
    J. B. Berkowitz-Mattuck, M. Rosetti and D. W. Lee, Metall. Trans. 1 (1970) 479.Google Scholar
  56. 56.
    S. M. Tuominen and J. M. Dahl, J. Less-Common Metals 81 (1981) 249.Google Scholar
  57. 57.
    M. P. Borom, R. B. Bolom and M. K. Brun, Adv. Ceram. Mater. 3 (1988) 607.Google Scholar
  58. 58.
    J. Cook, R. Mahapatra, E. W. Lee, A. Khan and J. Waldman, Ceram. Engng Sci. Proc. 12 (1991) 1656.Google Scholar
  59. 59.
    P. J. Meschter, Scripta Metall. Mater. 25 (1991) 521.Google Scholar
  60. 60.
    P. J. Meschter, in “High Temperature Ordered Intermetallic Alloys”, Materials Research Society Symposium Proceedings Vol. 213, edited by L. Johnson, D. P. Hope and J. O. Stiegler (Materials Research Society, Pittsburgh, Pennsylvania, 1991) p. 1027.Google Scholar
  61. 61.
    T. C. Chou and T. G. Nieh, Scripta Metall. Mater. 26 (1992) 1637.Google Scholar
  62. 62.
    T. C. Chou and T. G. Nieh, ibid. 27 (1992) 19.Google Scholar
  63. 63.
    M. Koizumi and M. Nishihara, in “Isostatic Pressing Technology and Applications” (Elsevier, London, New York, 1991) p. 181.Google Scholar
  64. 64.
    H. V. Atkinson and B. A. Rickinson, in “Hot Isostatic Processing” (Adam Hilger, Bristol, Philadelphia, New York, 1991) p. 9.Google Scholar
  65. 65.
    H. A. Kuhn, in “Powder Metallurgy Processing”, edited by H. A. Kuhn and A. Lawley (Academic Press, New York, 1978) p. 99.Google Scholar
  66. 66.
    D. L. Johnson, Scripta. Metall. 3 (1969) 567.Google Scholar
  67. 67.
    R. M. Spriggs and S. K. Dutta, in “Sintering and Related Phenomena”, edited by G. C. Kuczynski (Plenum, New York, London, 1973) p. 369.Google Scholar
  68. 68.
    M. R. Notis, R. H. Smoak and V. Krishnamachari, in “Sintering and Catalysis”, edited by G. C. Kuczynski (Plenum, New York, London, 1975) p. 493.Google Scholar
  69. 69.
    D. S. Wilkinson and M. F. Ashby, ibid.“ p. 473.Google Scholar
  70. 70.
    R. R. Rice, Ceram. Engng Sci. Proc. 11 (1990) 1226.Google Scholar
  71. 71.
    R. Rice, in “Advanced Ceramic Processing and Technology”, edited by J. G. P. Binner (Noyes Publication, Park Ridge, New Jersey, 1990) p. 173.Google Scholar
  72. 72.
    N. Claussen and J. Jahn, J. Amer. Ceram. Soc. 63 (1980) 228.Google Scholar
  73. 73.
    R. P. Messner and Y.-M. Chiang, Ceram. Engng Sci. Proc. 9 (1988) 1052.Google Scholar
  74. 74.
    Y.-M. Chiang, J. S. Haggerty, R. P. Messner and C. Demetry, Ceram. Bull. 68 (1989) 420.Google Scholar
  75. 75.
    R. P. Messner and Y.-M. Chiang, J. Amer. Ceram. Soc. 73 (1990) 1193.Google Scholar
  76. 76.
    M. M. Weiser, S. R. Smelser and J. J. Petrovic, in “Intermetallic Matrix Composites”, Materials Research Society Symposium Proceedings Vol. 194, edited by D. L. Anton, R. McMeeking, D. Miracle and P. Martin (Materials Research Society, Pittsburgh, Pennsylvania, 1990) p. 53.Google Scholar
  77. 77.
    J. Kajuch and K. Vedula, in “Advances in Powder Metallurgy”, in Proceedings of the 1990 Powder Metallurgy Conference and Exhibition, Part 2, (Metal Powder Ind. Fed., Amer. Powder Met. Inst., Princeton, New Jersey, 1990) p. 187.Google Scholar
  78. 78.
    R. K. Viswanadham, S. K. Mannan and S. Kumar, Scripta Metall. 22 (1988) 1011.Google Scholar
  79. 79.
    M. Atzmon, in “Solid State Powder Processing”, edited by A. H. Chauer and J. J. de Barbadillo (Minerals, Metals & Materials Society, Warrendale, Pennsylvania, 1990) p. 173.Google Scholar
  80. 80.
    M. Atzmon, Mater. Sci. Engng A134 (1991) 1326.Google Scholar
  81. 81.
    M. Atzmon, Metall. Trans. 23A (1992) 49.Google Scholar
  82. 82.
    R. Sundaresan and F. H. Froes, JOM 39 (1987) 22.Google Scholar
  83. 83.
    R. Sundaresan and F. H. Froes, Metal Powder Report 44 (1989) 195.Google Scholar
  84. 84.
    S. Ochiai, T. Shirokura, D. Takashi, K. Yoshiharu and Y. Kojima, ISIJ Intl 31 (1991) 1106.Google Scholar
  85. 85.
    F. H. Froes, C. Suryanarayana, E. J. Lavernia and G. E. Bobeck, SAMPE Quarterly July (1991) 11.Google Scholar
  86. 86.
    D. Parlapanski, S. Denev, S. Ruseva and E. Gatev, J. Less-Common Metals 171 (1991) 231.Google Scholar
  87. 87.
    M. A. Morris and D. G. Morris, Mater. Sci. Engng A110 (1989) 139.Google Scholar
  88. 88.
    M. A. Morris and D. G. Morris, ibid. A136 (1991) 59.Google Scholar
  89. 89.
    S. G. Young and G. R. Zellars, Thin Solid Films 53 (1978) 241.Google Scholar
  90. 90.
    B. T. McDermott and C. C. Koch, Scripta Metall. 20 (1986) 669.Google Scholar
  91. 91.
    R. L. White and W. D. Nix, in “New Developments and Applications in Composites”, edited by D. Kuhlmann-Wilsdorf and W. C. Harrigan (TMS, AIME, Warrendale, Pennsylvania, 1979) p. 78.Google Scholar
  92. 92.
    A. U. Seybolt, Trans. ASM. 59 (1966) 860.Google Scholar
  93. 93.
    M. Yamazaki, Y. Kawasaki and K. Kusunoki, in “Structural Applications of Mechanical Alloying”, edited by F. H. Froes and J. J. de Barbadillo (ASM Internationl, Materials Park, Ohio, 1990) p. 33.Google Scholar
  94. 94.
    M. A. Daeubler and D. Froschhammer, ibid.“ p. 119.Google Scholar
  95. 95.
    G. D. Smith and P. Ganesan, ibid.“ p. 109.Google Scholar
  96. 96.
    T. Ohashi and Y. Tanaka, Mater. Trans. JIM 32 (1991) 587.Google Scholar
  97. 97.
    N. Iwatomo and S. Uesaka, in “Ceramic Powder Processing IV”, Proceedings of the Fourth International Conference on Ceramic Powder Processing Science, edited by S.-I. Hirano, G. L. Messing and H. Hausner (American Ceramic Society, Westerville, Ohio, 1990) p. 177.Google Scholar
  98. 98.
    E. Ma, J. Pagan, G. Granford and M. Atzmon, J. Mater. Res. 8 (1993) 1836.Google Scholar
  99. 99.
    S. Jayashankar and M. J. Kaufman, Scripta Metall. Mater. 26 (1992) 1245.Google Scholar
  100. 100.
    R. B. Schwarz, S. R. Srinivasan, J. J. Petrovic and C. J. Maggiore, Mater. Sci. Eng. A155 (1992) 75.Google Scholar
  101. 101.
    A. A. Zenin, A. G. Merzhanov and G. A. Nersisyan, Combust. Explos. Shock Waves (English Translation) 17 (1981) 63.Google Scholar
  102. 102.
    T. Boddington, P. G. Laye, J. Tipping and D. Whally, Combust. Frame 63 (1986) 359.Google Scholar
  103. 103.
    Z. A. Munir, Metall. Trans. 23A (1992) 7.Google Scholar
  104. 104.
    A. R. Sarkisyan, S. K. Dolukhanyan, I. P. Borovinskaya and A. G. Merzhanov, Combust. Explos. Shock Waves (English Translation) 14 (1978) 310.Google Scholar
  105. 105.
    T. S. Azatyan, V. M. Maltsev, A. G. Merzhanov and V. A. Seleznev, ibid. 15 (1978) 35.Google Scholar
  106. 106.
    J. Trambukis and Z. A. Munir, J. Amer Ceram. Soc. 73 (1990) 1240.Google Scholar
  107. 107.
    A. K. Bhattacharya, ibid. 74 (1991) 2707.Google Scholar
  108. 108.
    S. C. Deevi, Mater. Sci. Engng A149 (1992) 241.Google Scholar
  109. 109.
    A. K. Bhattacharya, Ceram. Engng Sci. Proc. 12 (1991) 1697.Google Scholar
  110. 110.
    J. W. McCauley, ibid. 11 (1990) 1137.Google Scholar
  111. 111.
    J. A. Puszynski, S. Majorowski and V. Hlavacek, ibid. 11 (1990) 1182.Google Scholar
  112. 112.
    R. W. Rice, ibid. 11 (1990) 1203.Google Scholar
  113. 113.
    B. H. Rabin and R. N. Wright, Metell. Trans. A23 (1992) 35.Google Scholar
  114. 114.
    I. Song and N. H. Thadhani, ibid. A23 (1992) 41.Google Scholar
  115. 115.
    B. R. Krueger, A. H. Mutz and T. Vreeland, Jr., ibid. A23 (1992) 55.Google Scholar
  116. 116.
    H. C. Yi, J. J. Moore and A. Petric, ibid. A23 (1992) 59.Google Scholar
  117. 117.
    J.-P. Lebrat, A. Varma and A. E. Miller, ibid. A23 (1992) 69.Google Scholar
  118. 118.
    D. A. Hoke, M. A. Meyers, L. W. Meyer and G. T. Gary III, ibid. A23 (1992) 77.Google Scholar
  119. 119.
    P. W. Fuerschbach and G. A. Knorovsky, Welding J. 70 (1991) S287.Google Scholar
  120. 120.
    R. W. Smith, E. Harzenski and T. Robisch, in “Thermal Spray Research and Applications”, edited by T. F. Bernecki (ASM International, Materials Park, Ohio, 1991) p. 617.Google Scholar
  121. 121.
    E. J. Lavernia, Intl J. Rapid Solid. 5 (1989) 47.Google Scholar
  122. 122.
    P. Mathur and A. Lawley, Acta Metall. 37 (1989) 429.Google Scholar
  123. 123.
    A. R. E. Singer, Mater. Sci. Engng. 135A (1991) 13.Google Scholar
  124. 124.
    P. Mathur and A. Lawley, Mater. Sci, Engng 142A (1991) 261.Google Scholar
  125. 125.
    X. Liang and E. J. Lavernia, Acta Metall. Mater. 40 (1992) 3003.Google Scholar
  126. 126.
    E. J. Lavernia, J. D. Ayers and T. S. Srivatsan, Intl Mater. Rev. 37 (1992) 1.Google Scholar
  127. 127.
    M. R. Jackson, J. R. Rairden, J. S. Smith and R. W. Smith, JOM 33 (1981) 23.Google Scholar
  128. 128.
    P. A. Siemers, M. R. Jackson, R. L. Mehan and J. R. Rairden III, Ceram. Engng Sci. Proc. 6 (1985) 896.Google Scholar
  129. 129.
    P. Fauchais, A. Vardelle and M. Vardelle, Ceram. Intl. 17 (1991) 367.Google Scholar
  130. 130.
    M. F. Smith, D. T. McGuffin, J. A. Henfling and W. B. Lenling, in “Thermal Spraying Coating: Properties, Processes and Applications” edited by T. F. Bernecki (ASM International, Materials Park, Ohio, 1992) p. 27.Google Scholar
  131. 131.
    J. E. Nerz, B. A. Kushner, Jr. and A. J. Rotolico, ibid.“ p. 121.Google Scholar
  132. 132.
    R. Tiwari, H. Herman and S. Sampath, in “High Temperature Ordered Intermetallic Alloys”, Materials Research Society Symposium Proceedings Vol. 213, edited by L. Johnson, D. P. Hope and J. O. Stiegler (Materials Research Society, Pittsburgh, Pennsylvania, 1991) p. 807.Google Scholar
  133. 133.
    Z. Z. Mutasim and R. W. Smith, “Thermal Plasma Applications in Materials and Metallurgical Processing”, edited by N. El-Kaddah (Minerals, Metals & Materials Society, Warrendale, Pennsylvania, 1992) p. 269.Google Scholar
  134. 134.
    J. Karthikeyan, R. Ratnaraj, A. J. Hill, Y. C. Fayman and C. C. Berndt, in “Thermal Spraying Coating: Properties, Processes and Applications” edited by T. F. Bernecki (ASM International, Materials Park, Ohio, 1992) p. 497.Google Scholar
  135. 135.
    S. Oki, S. Gohda, T. Shomura, T. H. Kimura and T. Yoshioka, ibid.“ p. 491.Google Scholar
  136. 136.
    R. Tiwari, H. Herman and S. Sampath, Mater. Sci. Engng A155 (1992) 95.Google Scholar
  137. 137.
    Y. L. Jeng, J. Wolfenstine, E. J. Lavernia, D. E. Bailey and A. Sickinger, Scripta. Metall. Mater. 28 (1993) 453.Google Scholar
  138. 138.
    Y. L. Jeng, E. J. Lavernia, J. Wolfenstine, D. E. Bailey and A. Sickinger, Scripta. Metall. Mater. 29 (1993) 107.Google Scholar
  139. 139.
    C. Wagner, Z. Anorg. Allg Chem. 236 (1938) 320.Google Scholar
  140. 140.
    C. Wagner, J. Etectrochem. Soc. 103 (1956) 571.Google Scholar
  141. 141.
    C. Wagner, Z. Phys. Chem. 64 (1969) 49.Google Scholar
  142. 142.
    R. A. Rapp, A. Ezis and G. J. Yurek, Metall. Trans. 4 (1973) 1283.Google Scholar
  143. 143.
    G. J. Yurek, R. A. Rapp and J. P. Hirth, ibid. 4 (1973) 1293.Google Scholar
  144. 144.
    S. R. Shatynski, J. P. Hirth and R. A. Rapp, ibid. 10A (1979) 591.Google Scholar
  145. 145.
    G. J. Yurek, R. A. Rapp and J. P. Hirth, ibid. 10A (1979) 1473.Google Scholar
  146. 146.
    C. Tangchitvittaya, J. P. Hirth and R. A. Rapp, ibid. 13A (1982) 585.Google Scholar
  147. 147.
    C. H. Henager, Jr., J. L. Brimhall and J. P. Hirth, Scripta. Metall Mater. 26 (1992) 585.Google Scholar
  148. 148.
    C. H. Henager, Jr., J. L. Brimhall and J. P. Hirth, Mater. Sci. Engng A155 (1992) 109.Google Scholar
  149. 149.
    J. M. Brupbacher, L. Christodovlou and D. C. Nagle, XDTM, U.S. Patent No. 4710348Google Scholar
  150. 150.
    A. R. C. Westwood, Metall Trans. 19A (1988) 749.Google Scholar
  151. 151.
    L. Christodoulou, P. A. Parrish and C. R. Crowe, in “High Temperature/High Performance Composites”, Materials Research Society Symposium Proceedings Vol. 120, edited by F. D. Lemkey, S. G. Fishman, A. G. Evans and J. R. Strife (Materials Research Society. Pittsburgh, Pennsylvania, 1988) p. 29.Google Scholar
  152. 152.
    L. Wang and R. J. Arsenault, Metall. Trans. 22A (1991) 3013.Google Scholar
  153. 153.
    D. D. Vvedensky, M. E. Eberhart, L. Christodoulou, S. Crampin and J. M. MacLaren, Mater. Sci. Engng A126 (1990) 33.Google Scholar
  154. 154.
    D. E. Larsen, L. Christodoulou, S. L. Kampe and P. Sadler, ibid. A144 (1991) 45.Google Scholar
  155. 155.
    E. W. Lee, J. Cook, A. Khan, R. Mahapatra and J. Waldman, JOM 43 (1991) 54.Google Scholar
  156. 156.
    R. M. Aikin, Jr., Mater. Sci. Engng A155 (1992) 121.Google Scholar
  157. 157.
    D. A. Berztiss, R. R. Cerchiara, E. A. Gulbransen, F. S. Pettit and G. H. Meier, ibid. A155 (1992) 165.Google Scholar
  158. 158.
    M. Ruhle and A. G. Evans, Prog. Mater. Sci. 33 (1989) 85.Google Scholar
  159. 159.
    S. A. Maloy, J. J. Lewandowski, A. H. Heuer and J. J. Petrovic, Mater. Sci. Engng A155 (1992) 159.Google Scholar
  160. 160.
    E. M. Levin, in “Phase Diagram for Ceramists”, edited by E. M. Levin, H. F. McMurdie, F. P. Hall, M. K. Reser and H. Insley (American Ceramic Society, Columbus, Ohio, 1955–1959) p. 5.Google Scholar
  161. 161.
    W. A. Kaysser and G. Petzow, Powder Metall. 28 (1985) 145.Google Scholar
  162. 162.
    A. Basu and A. Ghosh, in “Advanced Metal Matrix Composites for Elevated Temperatures Conference Proceedings”, edited by M. N. Gungor, E. J. Lavernia and S. G. Fishman (ASM Int. Materials Park, Ohio, 1991) p. 41.Google Scholar
  163. 163.
    S. Bose, Mater. Sci. Engng A155 (1992) 217.Google Scholar
  164. 164.
    S. M. Wiederhorn, R. J. Gettings, D. E. Ro-Berts, C. Ostertag and J. J. Petrovic, ibid. A155 (1992) 209.Google Scholar
  165. 165.
    M. Suzuki, S. R. Nutt and R. M. Aikin, Jr., in “Intermetallic Matrix Composites II”, Materials Research Society Symposium Proceedings Vol. 273, edited by D. Miracle, J. Graves and D. Anton (Materials Research Society, Pittsburgh, Pennsylvania, 1992) p. 267.Google Scholar
  166. 166.
    M. Suzuki, S. R. Nutt and R. M. Aikin, Jr., Mater. Sci. Engng A162 (1993) 73.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Y. -L. Jeng
    • 1
  • E. J. Lavernia
    • 1
  1. 1.Materials Science and Engineering, Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA

Personalised recommendations