Journal of Materials Science

, Volume 29, Issue 18, pp 4750–4756 | Cite as

Measurement of the fracture toughness of polycrystalline diamond using the double-torsion test

  • Tze-Pin Lin
  • G. A. Cooper
  • M. Hood
Papers

Abstract

The double-torsion test was employed to study the processes of crack propagation and to measure the fracture toughness of polycrystalline diamond. The value of fracture toughness of about 13 MPa m1/2 is surprisingly high. Inhomogeneity in microstructure may cause discontinuous crack propagation which makes it difficult to study the subcritical crack growth behaviour of this polycrystalline material. Subcritical crack growth is shown to be negligible and crack deflection is shown to be an important toughening mechanism in polycrystalline diamond.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Brooks, in “The Properties of Diamond”, edited by J. E. Field (Academic, London, 1979) p. 383.Google Scholar
  2. 2.
    R. H. Wentorf, R. C. Devries and F. P. Bundy, Science 208 (1980) 873.Google Scholar
  3. 3.
    L. E. Hibbs Jr and R. H. Wentorf Jr, High Temp.-High Press. 6 (1974) 409.Google Scholar
  4. 4.
    M. Akaishi, S. Yamaoka, J. Tanaka, T. Ohsawa and O. Fukunaga, J. Amer. Ceram. Soc. 70 (1987) C237.Google Scholar
  5. 5.
    M. A. Arceneaux and J. L. Fielder, in “Field Experience with PDC bits in North-East Texas”, SPE paper 11390, presented at the SPE/IADC Annual Drilling Conference, New Orleans. Louisiana, USA, 20–23 Feb 1983 (SPE, Richardson) p. 273–8.Google Scholar
  6. 6.
    T. P. Lin, M. Hood, G. A. Cooper and X. Li, Wear 156 (1992) 133.Google Scholar
  7. 7.
    B. Lawn and R. Wilshaw, J. Mater. Sci. 10 (1975) 1049.Google Scholar
  8. 8.
    T. Noma and A. Sawoaka, J. Amer. Ceram. Soc. 68 (1985) C271.Google Scholar
  9. 9.
    S. Ya. Yarema, Soviet Mater. Sci. 12 (1976) 361.Google Scholar
  10. 10.
    L. N. Devin, A. L. Maistrenko, E. S. Simkin, S. I. Sklyar and N. V. Tsypin, Soviet Powd. Metall. Metal Ceram. 21 (1982) 419.Google Scholar
  11. 11.
    A. Lammer, Mater. Sci. Technol. 4 (1988) 949.Google Scholar
  12. 12.
    J. A. Kies and A. B. J. Clark, in Proceedings of 2nd International Conference on Fracture, Brighton, April 1969, edited by P. L. Pratt (Chapman & Hall, London, 1969) p. 483.Google Scholar
  13. 13.
    R. B. Tait, P. R. Fry and G. G. Garrett, Exper. Mech. 27 (1987) 14.Google Scholar
  14. 14.
    A. G. Evans, J. Mater. Sci. 7 (1972) 1137.Google Scholar
  15. 15.
    D. P. Williams and A. G. Evans, J. Testg Eval. 1 (1973) 264.Google Scholar
  16. 16.
    D. L. Shetty and A. V. Virkar, J. Amer. Ceram. Soc. 61 (1978) 93.Google Scholar
  17. 17.
    B. J. Pletka, E. R. Fuller Jr and B. G. Koepke, in “Fracture Mechanics Applied to Brittle Material”, ASTM STP 678, edited by S. W. Freiman (American Society for Testing and Materials, Philadelphia, 1979) p. 19.Google Scholar
  18. 18.
    B. K. Atkinson, J. Geophys. Res. 89 (B6) (1984) 4077.Google Scholar
  19. 19.
    K. J. Chen and Y. C. Ko, Amer. Ceram. Soc. Bull. 67 (1988) 1228.Google Scholar
  20. 20.
    E. R. Fuller Jr, in “Fracture Mechanics Applied to Brittle Materials”, ASTM STP 678, edited by S. W. Freiman (American Society for Testing and Materials, Philadelphia, 1979) p. 3.Google Scholar
  21. 21.
    G. G. Trantina, J. Amer. Ceram. Soc. 60 (1977) 338.Google Scholar
  22. 22.
    L. E. Hibbs Jr and M. Lee, Wear 46 (1978) 141.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Tze-Pin Lin
    • 1
  • G. A. Cooper
    • 1
  • M. Hood
    • 2
  1. 1.Department of Materials Science and Mineral EngineeringUniversity of California at BerkeleyUSA
  2. 2.Centre for Mining Technology and EquipmentQueensland Centre for Advanced TechnologiesQueenslandAustralia

Personalised recommendations