Journal of Materials Science

, Volume 28, Issue 10, pp 2738–2744

Characterization of fluorine-doped silica glasses

  • M. Kyoto
  • Y. Ohoga
  • S. Ishikawa
  • Y. Ishiguro
Papers

Abstract

Fluorine-doped silica glasses containing up to 2 wt% were prepared by the vapour-phaseaxial-deposition (VAD) sintering process. The characteristics of these glasses were investigated by Raman spectroscopy, vacuum-ultraviolet-ultraviolet (v.u.v-u.v.) spectroscopy, and viscosity measurements. From the Raman spectroscopic investigation, it has been shown that the Si-F bond structure in the fibres is the same as that in bulk glass and is not affected by codoped additives such as B2O3. From the u.v.-v.u.v, spectroscopic investigation, it has been shown that the absorption band at 7.6 eV in high-purity silica glass is removed with the addition of fluorine. This addition produces a silica glass with most excellent transparency in u.v. and v.u.v. regions. Also it was observed that the optimum addition is around 1 wt%. This fact proves that fluorine incorporation in glass prevents the generation of defects related to optical loss in fibres. From the viscosity study, it was found that the viscosity decreases with an increase of the fluorine content in glass and the activation energy also decreases with increasing fluorine content.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Shiraishi, K. Fujiwara and S. Kurosaki, US Patent 4082 420.Google Scholar
  2. 2.
    K. Abe, Technical digest, Second European conference on optical communication, Paris, 1976 (Comite du Colloque International sur les Transmissions par fibers (Optique, Paris, 1977) p. 59.Google Scholar
  3. 3.
    A. Kawana, T. Miya, S. Araki and Y. Furui, Trans. IECEJ E65, 9 (1982).Google Scholar
  4. 4.
    K. Rau, A. Muhlich and M. Treber, Technical digest. Topical meeting of optical fiber transmission II, Williumsberg, 1977 (Optical Society of America, Washington).Google Scholar
  5. 5.
    M. Kyoto, H. Kanamori, N. Yoshioka, G. Tanaka and M. Watanabe, Technical digest, Conference on optical fiber communication, New Orleans, LA, 1984, Paper MG5. (Optical Society of America, Washington).Google Scholar
  6. 6.
    G. E. Berkey, ibid. Paper MG3.Google Scholar
  7. 7.
    P. Dumas, J. Corset, W. Carvalho, Y. Levy and Y. Neuman, J. Non-Crys. Solids 47 (2) (1982) 239.Google Scholar
  8. 8.
    E. M. Rabinovich, Phys. Chem. Glasses 24 (2) (1983) 54.Google Scholar
  9. 9.
    W. Heitmann, H. U. Bonewitz and A. Muhlich, Elec. Lett. 19 (16) (1983) 616.Google Scholar
  10. 10.
    P. Bachmann, P. Geittner, D. Leers, M. Lennertz and H. Wilson, Elec. Lett. 20 (1) (1984) 35.Google Scholar
  11. 11.
    K. Noguchi, M. Murakami, Y. Uesugi and K. Ishihara, Appl. Phys. Lett. 44 (5) (1984) 491.Google Scholar
  12. 12.
    H. Imai, K. Arai, Y. Fujimoto, Y. Ishii and H. Namikawa, Phys. Chem. Glasses 29 (2) (1988) 54.Google Scholar
  13. 13.
    Y. Hibino, H. Hanafusa, K. Ema and S. Hyodo, Appl. Phys. Lett. 47 (1982) 812.Google Scholar
  14. 14.
    S. Yonemori, A. Masui and M. Noshiro, Yogyo-Kyokai-Shi 94 (8) (1986) 863.Google Scholar
  15. 15.
    R. W. Douglass, W. L. Armstrong, J. P. Edward and D. Hall, Glass Tech. 6 (1965) 52.Google Scholar
  16. 16.
    F. L. Gareener, J. Non-Crys. Solids 49 (1982) 53.Google Scholar
  17. 17.
    C. A. M. Mulder, R. K. Janssen, P. Bachmann and D. Leers, J. Non-Crys. Solids 72 (1985) 243.Google Scholar
  18. 18.
    N. Shibata, M. Horiguchi and T. Edahiro, J. Non-Crys. Solids 45 (1981) 115.Google Scholar
  19. 19.
    H. Imai, K. Arai, H. Imagawa, H. Hosono and Y. Abe, Phys. Rev. B38 (1988) 12772.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • M. Kyoto
    • 1
  • Y. Ohoga
    • 1
  • S. Ishikawa
    • 1
  • Y. Ishiguro
    • 1
  1. 1.Research and Development GroupSumitomo Electric Industries LtdYokohamaJapan

Personalised recommendations