Advertisement

Journal of Materials Science

, Volume 30, Issue 5, pp 1266–1272 | Cite as

Mechanical fatigue of epoxy resin

  • M. Nagasawa
  • H. Kinuhata
  • H. Koizuka
  • K. Miyamoto
  • T. Tanaka
  • H. Kishimoto
  • T. Koike
Papers

Abstract

In static bending fatigue tests, epoxy resins show practically no fatigue if the stress given to specimen is lower than a critical value, which is close to the bending strength of the specimen. In cyclic bending fatigue tests, on the other hand, the resins are easily fractured even though the stresses are far below the critical values. Some strain may be accumulated on the surface of specimen through cyclic deformations. However, the strain accumulated is reversible. If the specimen is allowed to rest, the strain disappears. If the strain reaches a critical value, an irreversible transition may be induced, probably in the arrangement of segments on the surface. A crack nucleus thus created may propagate and cause the final fracture of the specimen, following the fracture mechanics of elastic materials. The lifetime of epoxy resins under cyclic bending load is determined by the time required for creating a crack nucleus on surface.

Keywords

Polymer Fatigue Epoxy Fracture Mechanic Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Young in “Developments in Polymer Fracture-1”, edited by E. H. Andrews (Applied Science, 1979), Ch. 6.Google Scholar
  2. 2.
    A. J. Kinloch and R. J. Young, “Fracture Behavior of Polymers” (Elsevier Applied Science, 1983) p. 316.Google Scholar
  3. 3.
    A. Murakami, H. Matsushita, T. Yoshiki and M. Shimpo, Nihon Sechaku Kyokai Shi 4 (1983) 135.Google Scholar
  4. 4.
    P. J. E. Forsyth, Acta Metall. 11 (1963) 703.Google Scholar
  5. 5.
    S. A. Sutton, Eng. Fract. Mech. 6 (1974) 587.Google Scholar
  6. 6.
    T. Koike and R. Tanaka, J. Appl. Polym. Sci. 42 (1991) 1333.Google Scholar
  7. 7.
    A. J. Kovacs, J. Polym. Sci. 30 (1958) 131.Google Scholar
  8. 8.
    Idem Fortschr. Hochpolym. Forsch. 3 (1965) 2259.Google Scholar
  9. 9.
    R. A. Glendhill and A. J. Kinloch, Polymer 17 (1976) 727.Google Scholar
  10. 10.
    H. Tada, “The Stress Analysis of Cracks Handbook” (Del. Research Corporation, Hellertown, PA, 1973).Google Scholar
  11. 11.
    Y. Murakami and H. Tsuru, “Stress Intensity Factors Handbook” (Society of Materials Science, Japan, 1986).Google Scholar
  12. 12.
    A. Murakami, T. Yoshiki, M. Ochi and M. Shimpo, Kobunshi Ronbunshu 39 (1982) 557.Google Scholar
  13. 13.
    A. Murakami, H. Matsushita, T. Yoshiki and M. Shimpo, Nihon Sechaku Kyokai Shi 19 (1983) 529.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. Nagasawa
    • 1
  • H. Kinuhata
    • 1
  • H. Koizuka
    • 1
  • K. Miyamoto
    • 1
  • T. Tanaka
    • 1
  • H. Kishimoto
    • 1
  • T. Koike
    • 2
  1. 1.Toyota Technological InstituteNagoyaJapan
  2. 2.Research and Development LaboratoriesYuka Shell Epoxy Co. Ltd.MieJapan

Personalised recommendations