Marine Biology

, Volume 2, Issue 4, pp 325–337

Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide

  • H. Theede
  • A. Ponat
  • K. Hiroki
  • C. Schlieper
Article

Abstract

Oxygen-deficient and H2S-containing marine areas are characterized by a decline in the number of species. In laboratory experiments with bottom invertebrates from various biotopes of the North Sea and the Baltic, comparative measurements of the resistance to oxygen-deficiency alone, and to the simultaneous presence of H2S, were carried out. The resistance values obtained show relations to the substratum on which the species naturally occur. The resistance to H2S is greater in those macrofauna species which show higher survival rates under oxygen-deficiency. Further experiments with isolated tissues demonstrate that the species specific differences in resistance occurring in whole animals are already based on the cell metabolism. In general, oxygen-deficiency and simultaneous presence of H2S were endured better in cold than in warmth, and at somewhat reduced pH-values (around 7). The dependence of this resistance on the salinity was only minimal in euryhaline species.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alsterberg, G.: Wichtige Züge in der Biologie der Süß-wassergastropoden, 130 pp. Lund: Gleerup 1930.Google Scholar
  2. Brand, T. von: Anaerobiosis in invertebrates, 328 pp. Biodynamica. No. 4, Normandy 21. Missouri: Biodynamica 1946.Google Scholar
  3. Brongersma-Sanders, M.: The importance of upwelling water to vertebrate paleontology and oil geology. Afd. Nat. Verh. K. ned. Akad. Wet. Afd. Nat. (Ser. 2) 45, (4), 1–112 (1948).Google Scholar
  4. —: Mass mortality in the sea. In: Treatise on marine ecology and paleoecology. Vol. 1. Ecology, pp 941–1010. Ed. by J. W. Hedgeth. Baltimore: Waverly Press 1957.Google Scholar
  5. Caspers, H.: Black Sea and Sea of Azow. In: Treatise on marine ecology and paleoecology. Vol. 1. Ecology, pp 801–890. Ed. by J. W. Hedgpeth. Baltimore: Waverly Press 1957.Google Scholar
  6. Childress, J. J.: Oxygen minimum layer: vertical distribution and respiration of the mysid Gnathophausia ingens. Science, N.Y. 160, 1242–1243 (1968).Google Scholar
  7. Collip, J. B.: A further study of the respiratory processes in Mya arenaria and other marine mollusca. J. biol. Chem. 49, 297–310 (1921).Google Scholar
  8. Dahl, F. (Ed.): Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise. Jena: G. Fischer 1928 and later issues.Google Scholar
  9. Dales, R. P.: Survival of anaerobic periods by two intertidal polychaetes Arenicola marina (L.) and Owenia fusiformis Delle Chiaje. J. mar. biol. Ass. U.K. 37, 521–529 (1958).Google Scholar
  10. Demel, K. and Z. Mulicki: Studia ilosciowe nad wydajnoscia dna poludniowego Baltyku. (Quantitative investigations on the biological bottom productivity of the south Baltic.) Pr. morsk. Inst. ryb. Gdyni 7, 75–126 (1954).Google Scholar
  11. Eisma, D.: Shell-characteristics of Cardium edule L. as indicators of salinity. Neth. J. Sea Res. 2, 493–540 (1965).Google Scholar
  12. Fenchel, T. and B. O. Jansson: On the vertical distribution of the microfauna in the sediments of the brackish-water beach. Ophelia 3, 161–177 (1966).Google Scholar
  13. — and W. von Thun: Vertical and horizontal distribution of the metazoan microfauna and of some physical factors in a sandy beach in the northern part of the Oresund. Ophelia 4, 227–243 (1967).Google Scholar
  14. Fonselius, S. H.: Hydrography of the Baltic deep basins. Fishery Board of Sweden 13, 1–40 (1962).Google Scholar
  15. Grimpe, G. und E. Wagler (Ed.): Die Tierwelt der Nord- und Ostsee. Leipzig: Akademische Verlagsgesellschaft 1926 and later issuesGoogle Scholar
  16. Gunther, E. R.: A report on oceanographical investigations in the Peru coastal current. ‘Discovery’ Rep. 13, 107–276 (1936).Google Scholar
  17. Hecht, F.: Der chemische Einfluß organischer Zersetzungsstoffe auf das Benthos, dargelegt and Untersuchungen mit marinen Polychaeten, insbesondere Arenicola marina L. Senckenbergiana 14, 199–220 (1932).Google Scholar
  18. Hessle, C.: Bottenboniteringar i inre Östersjön. (Quantitative investigations into bottom fauna of the inner Baltic.) Meddn K. LantbrStyr. 250, 1–52 (1924).Google Scholar
  19. Ivanenkov, V. N. and A. G. Rozanov: The hydrogen sulphide contamination of the intermediate water layers of the Arabian Sea and the Bay of Bengal [Russ.]. Okeanologija 1, 443–449 (1961).Google Scholar
  20. Jacubowa, L. und E. Malm: Die Beziehungen einiger Benthosformen des Schwarzen Meeres zum Medium. Biol. Zbl. 51, 105–116 (1931).Google Scholar
  21. Jaeckel, S., Jr.: Die Molluskenfauna der Schlei. Arch. Hydrobiol. 44, 214–270 (1950).Google Scholar
  22. —: Zur Ökologie der Molluskenfauna in der westlichen Ostsee. Schr. naturw. Ver. Schlesw.-Holst. 26, 18–50 (1952).Google Scholar
  23. Jansson, B. O.: The importance of tolerance and preference experiments for the interpretation of mesopsammon field distributions. Helgoländer wiss. Meeresunters. 15, 41–58 (1967).Google Scholar
  24. —: The availability of oxygen for the interstitial fauna of sandy beaches. J. exp. mar. Biol. Ecol. 1, 123–143 (1968a).Google Scholar
  25. —: Quantitative and experimental studies of the interstitial fauna in four Swedish sandy beaches. Ophelia 5, 1–71 (1968b).Google Scholar
  26. Kinzer, J.: Die Verbreitung des Zooplanktons in Echostreuschichten extrem sauerstoffarmen Wassers. Umschau 67, 733–734 (1967).Google Scholar
  27. Kuschinsky, G. und H. Lüllmann: Kurzes Lehrbuch der Pharmakologie 345 pp. Stuttgart: G. Thieme 1966.Google Scholar
  28. Kusnezow, S. I.: Die Rolle der Mikroorganismen im Stoffkreislauf der Seen, 301 pp. Berlin: VEB Deutscher Verlag der Wissenschaften 1959.Google Scholar
  29. Lindeman, R. L.: Experimental simulation of winter in a senescent lake. Ecology 23, 1–13 (1942).Google Scholar
  30. Lund, E. J.: Self-silting, survival of the oysters as a closed system, and reducing tendencies of the environment of the oysters. Publs Inst. mar. Sci. Univ. Tex. 4, 313–419 (1957).Google Scholar
  31. Moore, H. B.: The muds of the Clyde Sea area. III. Chemical and physiological conditions; rate and nature of sedimentation and fauna. J. mar. biol. Ass. U.K. 17, 325–358 (1931).Google Scholar
  32. Nikitin, V. N.: Die untere Planktongrenze und deren Verteilung im Schwarzen Meer. Int. Revue ges. Hydrobiol. Hydrogr. 25, 102–130 (1931).Google Scholar
  33. Nikitine, B. N. et E. Malm: L'influence de l'oxygène, des ions hydrogène et de l'acide carbonique sur la distribution verticale du Plankton de la mer Noire. Annls Inst. océanogr., Monaco 14, 137–171 (1934).Google Scholar
  34. Ponat, A.: Untersuchungen zur zellulären Druckresistanz verschiedener Evertebraten der Nord-und Ostsee. Kieler Meeresforsch. 23, 21–47 (1967).Google Scholar
  35. — und H. Theede: Die pH-Abhängigkeit der zellulären Druckresistenz bei Mytilus edulis. Helgoländer wiss. Meeresunters. 16, 231–237 (1967).Google Scholar
  36. Reshöft, K.: Untersuchungen zur zellulären osmotischen und thermischen Resistenz verschiedener Lamellibranchier der deutschen Küstengewässer. Kieler Meeresforsch. 17, 65–84 (1961).Google Scholar
  37. Richards, F. A.: Oxygen in the ocean. In: Treatise on marine ecology and paleoecology, Vol. 1. Ecology, pp 185–238, Ed. by J. W. Hedgpeth. Baltimore: Waverly Press 1957.Google Scholar
  38. —: Anoxic basins and fjords. In: Chemical oceanography. Vol. 1. pp 611–645. Ed. by J. P. Riley, and G. Skirrow. London and New York: Academic Press 1965.Google Scholar
  39. Schlieper, C.: Die Regulation des Herzschlages der Miesmuschel Mytilus edulis L. bei geöffneten und geschlossenen Schalen. Kieler Meeresforsch. 11, 139–148 (1955).Google Scholar
  40. —: Biologische Wirkungen hoher Wasserdrucke. Experimentelle Tiefsee-Physiologie. Veröff. Inst. Meeresforsch. Bremerh. 8, 31–48 (1963).Google Scholar
  41. —: Genetic and nongenetic cellular resistance adaptation in marine invertebrates. Helgoländer wiss. Meeresunters. 14, 482–502 (1966).Google Scholar
  42. —, H. Flügel and J. Rudolf: Temperature and salinity relationships in marine bottom invertebrates. Experientia 16, 470–477 (1960).Google Scholar
  43. — and H. Theede: Experimental investigations of the cellular resistance ranges of marine temperate and tropical bivalves: Results of the Indian Ocean Expedition of the German Research Association. Physiol. Zoöl. 40, 345–360 (1967).Google Scholar
  44. — und R. Kowalski: Ein zellulärer Regulationsmechanisms für erhöhte Kiemenventilation nach Anoxybiose bei Mytilus edulis L. Kieler Meeresforsch. 14, 42–47 (1958).Google Scholar
  45. — und P. Erman: Beitrag zur ökologisch-zellphysiologischen Charakterisierung des borealen Lamellibranchiers Modiolus modiolus L. Kieler Meeresforsch. 14, 3–10 (1958).Google Scholar
  46. Segerstrale, S. G.: Baltic Sea. In: Treatise on marine ecology and paleoecology. Vol. 1. Ecology, pp 751–800. Ed. by J. W. Hedgpeth. Baltimore: Waverly Press 1957.Google Scholar
  47. Skopintsev, B. A.: Gidrochimičeskie Materialy 27, 21 (1957) (zit. n. Richards 1965).Google Scholar
  48. —, A. V. Kabpov and O. A. Vershinina: Gidrochimičeskie Materialy 31, 127 (1961). (zit. n. Richards 1965).Google Scholar
  49. Sverdrup, H. U.: On the explanation of the oxygen minima and maxima in the oceans. J. Cons. perm. int. Explor. Mer. 13, 163–172 (1938).Google Scholar
  50. —, M. W. Johnson and R. H. Fleming: The oceans. Their physics, chemistry and general biology, 1087 pp. New York: Prentice-Hall Inc. 1946.Google Scholar
  51. Thamdrup, H. M. Beiträge zur Ökologie der Wattenfauna auf experimenteller Grundlage. Meddr Kommn Danm. Fisk.-og Havunders. Serio Fiskeri 10 (2), 1–125 (1935).Google Scholar
  52. Theede, H.: Vergleichende experimentelle Untersuchungen über die zelluläre Gefrierresistenz mariner Muscheln. Kieler Meeresforsch. 21, 153–166 (1965).Google Scholar
  53. — and J. Lassig: Comparative studies on cellular resistance of bivalves from marine and brackish waters. helgoländer wiss. Meeresunters. 16, 119–129 (1967).Google Scholar
  54. Thomsen, H.: Oxygen in the tropical Pacific. Nature, Lond. 127, 489–490 (1931).Google Scholar
  55. Tulkki, P.: Disappearance of the benthic fauna from the Basin of Bornholm (Southern Baltic), due to oxygen deficiency. Cah. Biol. mar. 6, 455–463 (1965).Google Scholar
  56. Ushakov, B. P.: Thermostability of cells and proteins of poikilotherms and its significance in speciation. Physiol. Rev. 44, 518–560 (1964).Google Scholar
  57. —: Cellular resistance adaptation to temperature and thermostability of the somatic cells with special reference to marine animals. Mar. Biol. 1, 153–160 (1968).Google Scholar
  58. Vernberg, F. J., C. Schlieper and D. E. Schneider: The influence of temperature and salinity on ciliary activity of excised gill tissue of molluscs from North Carolina. Comp. Biochem. Physiol. 8, 271–285 (1963).Google Scholar
  59. Vinogradov, M. E. and N. M. Voronina: The influence of oxygen deficit upon the plankton distribution in the Arabian Sea. [Russ.] Okeanologija 1, 670–678 (1961).Google Scholar
  60. Wattenberg, H. Die Durchlüftung des Atlantischen Ozeans. J. Cons. perm. int. Explor. Mer. 4, 68–79 (1929).Google Scholar
  61. —: Die Entstehung der sauerstoffarmen Zwischenschicht im Ozean. Annln Hydrogr. Berl. 67, 257–266 (1939).Google Scholar
  62. Wieser, W. and J. Kanwisher: Respiration and anaerobic survival in some seaweed-inhabiting invertebrates. Biol. Bull. mar. biol. Lab., Woods Hole 117, 594–600 (1959).Google Scholar
  63. — Ecological and physiological studies on marine nematodes from a small salt marsh near Woods Hole, Massachusetts. Limnol. Oceanogr. 6, 262–270 (1961).Google Scholar
  64. Wood, E. J. F.: Marine microbiol. Ecology, 243 pp. London: Chapman & Hall Ltd 1965.Google Scholar
  65. Zenkevitch, L.: Biology of the seas of the U.S.S.R., 955 pp. London: George Allen & Unwin Ltd 1963.Google Scholar
  66. Zhirmunsky, A. V.: A comparative study of cellular thermostability of marine invertebrates in relation to their geographical distribution and ecology. In: The cell and environmental temperature, pp 209–218. Ed. by A. S. Troshin. (Internat. Ser. of Monogr. in pure and appl. Biol. 34). Oxford, New York: Pergamon Press 1967.Google Scholar
  67. Zobell, C. E.: Marine microbiology, 240 pp. Waltham, Mass.: Chronica Botanica Co. 1946.Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • H. Theede
    • 1
  • A. Ponat
    • 1
  • K. Hiroki
    • 1
  • C. Schlieper
    • 1
  1. 1.Institut für Meereskunde an der Universität KielKielGermany (FRG)

Personalised recommendations